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Recap: Variational Inference +

>

e Variational formulation

A(9) = sup {07 — A" (1)}

e M : the marginal polytope, difficult to characterize
o A*: the negative entropy function, no explicit form

e Mean field method: non-convex inner bound and exact form of
entropy

e Bethe approximation and loopy belief propagation: polyhedral
outer bound and non-convex Bethe approximation



Mean Field Approximation
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Tractable Subgraphs :
e Definition: A subgraph F of the graph G is tractable if it is
feasible to perform exact inference
e Example: Q:= {rﬂ c RYA(®0) < +f}a:-}
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Q(Fy) = {0 € Qfer) = 0.Y(s.t) € B} QT) :={0 € by =0 V(s.t) ¢ E(T)}
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Mean Field Methods 2°

e For an exponential family with sufficient statistics ¢ defined
on graph G, the set of realizable mean parameter set

M(G;¢) :={p e R* | Ip s.t. Ey[op(X)] = pu}

e For a given tractable subgraph F, a subset of mean
parameters of interest

M(F;¢) = {1 € R? | 7 = Eg[¢(X)] for some 0 € Q(F)}

e Inner approximation M(F;¢)° C M(G;¢)°
e Mean field solves the relaxed problem

max_{{r.6) — A7(7))

o AL, =A" ‘,MF(@ is the exact dual function restricted to Mg(G)
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Example: Naive Mean Field for Ising Model
e Ising model in {0,1} representation —O—=F
4(\ S/\ 6(\
p(x) o< exp Z 05 + Z L0t T T
seV (s,t)eE O O A
7 8 9
e Mean parameters Lo 3
ps = E [ Xs] =P Xs=1] forall seV, and
4 5 6
s = Ep[ X Xy] = P[(X,, X)) = (1,1)] for all (s,t) € E. ©c o 0
e For fully disconnected graph F, o 9o 0

Mp(G):={71 € RIVIFIE] 10 <715 <1,Vs €V, 7 =757%,¥(s,t) € E}

e The dual decomposes into sum, one for each node
Ap(7) =) [rslogTs + (1 = 75) log(1 — 7))

seV



Example: Naive Mean Field for Ising Model °

e Mean field problem

A(0) > max {29 Ts + Z Ot 757 — AR ( )}

..... )e[0,1]m
(T15000s7m ) €[0,1] (s,t)eEE

e The same objective function as in free energy based
approach

e The naive mean field update equations

Tg < O (93 + Z 957t>

teN(s)

e Also yields lower bound on log partition function



Geometry of Mean Field :

Mean field optimization is always non-convex for any
exponential family in which the state space X’ is finite

Recall the marginal polytope is a convex hull v

7
M(G) = conv{¢p(e);e € X} ‘ \ ./

Mr(G) contains all the extreme points

If it is a strict subset, then it must be non-convex "A,

Example: two-node Ising model

Mp(G)={0<711 <1,0< 19 < 1,712 =11 72}

It has a parabolic cross section along 71 — 79 , hence non-convex



Bethe Approximation
and Sum-Product




Historical Information °

e Bethe (1935): a physicist who first developed the ideas related
to the loopy belief propagation in the Bethe approximation; not
fully appreciated outside the physics community until recently

e Gallager (1963): an electrical engineer who explored the loopy
belief propagation in his work on LDPC (Low Density Parity
Check) codes

e Yedidia (2001): a physicist who made an explicit connection
from the loopy belief propagation to the Bethe approximation
and further developed generalized belief propagation
algorithm
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Error Correcting Codes :

e Graphical model for (7,4) Hamming code

Channel Evidence

Codeword bits

+ + + Parity Checks

e Potential functions with hard constraint
{1 if v, ®xy By =1

Ystu(Ts, T, Xy) 1= _
stu(Ts: Tt Tu) 0 otherwise.

e Marginal probabilities = A posterior bit probabilities
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Example of LDPC Decoding

REDUNTAN REDUNDAM

parity bits < Bi'h,‘:"‘""*:ﬂ" :
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Example

of LDPC Decoding

RECEIVED:
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Sum-Product/Belief Propagation Algorithm | ¢

e Message passing rule:

/ 5 _~*
Mtz e x Yvutendyui) T Math} NN
z, uwEN(t)/s P {\
e Marginals: /\ /N
,Us(xs — st xs H Mt*s 375
teN(s

e Exact for trees, but approximate for loopy graphs (so called
loopy belief propagation)

e Question:
e How is the algorithm on trees related to variational principle?
e What is the algorithm doing for graphs with cycles?
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Tree Graphical Models o

Discrete variables X; € {0,1,...,ms —1}onatree T = (V,E)
I(xs) fors=1,...n, jeX;

Sufficient statistics: ,
Iik(zs,ze) for(s,t)e B, (j, k)€ Xsx X,

Exponential representation of distribution:

p(x;0) eXp{ZHS(azS)—i— Z Qst(ﬂfs,fbt)}

seV (s,t)eE
where 0s(zs) := D jex, Usilj(ws) (and similarly for Os¢(xs, xt))

Mean parameters are marginal probabilities:

Ms:j = Ep[Hj(XS)] = IP)[XS = ]] \V/] c XS, Ms(xs) — Z ,us;jﬂj(xs) — ]P)(XS — xs)

JEXS
Mst;ik = Ep[ﬂst;jk:(Xs;Xt)] — P[XS — j,Xt — k] V(j,k) € Xs € )C:t;
,ust<x87 iUt) — Z MSt;jk‘ij(xS7 .Tt) — ]P)(XS = T, Xt — xt)

(jak)exs XXt
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Marginal Polytope for Trees o

e Recall marginal polytope for general graphs

M(G) = {p € R* | Ip with marginals ps.;, tst. ik }

e By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

M(T) = {N >0 | Zﬂs(fvS) = 17ZMSt($svxt) = Ns(xS)}

e In particular, if © € M(T), then

Hr“ les H ,ust 33573375
S

eV Mt Cl?t)

has the corresponding margmals
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Decomposition of Entropy for Trees

e For trees, the entropy decomposes as

H(p(z;p)) =

—> p(; p) log p(; )
Z ( _ Z:us(xs) 1Og ,LLS(I8>> o

seV Ts

\ S

Hs(ps)

a (Z fst (T, 1) log pot (L, 21t) )

(s,t)EE Ts,Tt Fs («TS)/Lt(CCt>

7

Isi(pst), KL-Divergence

ZHS(,Us)_ Z Lot (pst)

seV (s,t)eE

e The dual function has an explicit form A*(u) = —H (p(x; 1))
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Exact Variational Principle for Trees o

e Variational formulation

A(f) = Mg&i’%) {<9mu> + Z Hg(ps) — Z Lst(ﬂst)}

seV (s,t)eR

e Assign Lagrange multiplier A4 for the normalization constraint
Cos(p) :==1—3, ps(zs) = 0; and s (z5) for each marginalization
constraint Cys(zs; 1) == ps(ws) — >, pst(Ts, 7)) =0

e The Lagrangian has the form

['(,Uv )‘) = <97 M> T Z Hs(ﬂs) - Z Ist(ﬂst) + Z )‘SSCSS(M)

s€V (s,;t)EE sEV

+ Z [Z)\Sii(xt)cst(xt)+Z)\ts(ﬂ3s)cts($s)}

(s, t)EE  x¢ Ts
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Lagrangian Derivation

2

e Taking the derivatives of the Lagrangian w.r.t. ps and ps:

oL
— 93 ajs - log/,lzs ajs _|_ A S 5133 +O
ey = ) homna) + 3 dute
oL pst(Ts, Tt) /
— 83 S —1 _)\3 s _)\s +C
Oty ) e o8 ety o) T Al

e Setting them to zeros yields

ps(Ts) o< exp{fs(zs)} H pr{)‘tS(xSZ}

teN (s) Mt:(rxs)

ps(xs,xe) o exp{0s(xs) + O (xt) + Ost (s, x¢) } X

H exp {)\us(azs)} H exp {Avt(iﬁt)}

weEN (s)\t veEN (t)\s
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Lagrangian Derivation (continued) | :°

-

e Adjusting the Lagrange multipliers or messages to enforce

Cis(xs; ) = ps(ws) — th pst(Ts, x¢) = 0
yields

Mis(xs) <+ ZeXp{Qt(xt)—l-est(ws,wt)} H Myt (xt)

wEN (t)\s

e Conclusion: the message passing updates are a Lagrange
method to solve the stationary condition of the variational
formulation
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BP on Arbitrary Graphs o

e [wo main difficulties of the variational formulation
A(0) = sup {0 p — A" (1)}
peM

e The marginal polytope M is hard to characterize, so let’s use the tree-
based outer bound

LG)=S7>0]) 7o(xs) =1 Talws,z1) = 7o(5)

These locally consistent vectors 7 are called pseudo-marginals.

e Exact entropy —A* (1) lacks explicit form, so let's approximate it by the
exact expression for trees

_A*( )NHBethe ZH 7-3 Z Ist Tst

seV (s,t)eE
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Bethe Variational Problem (BVP) | :°

e Combining these two ingredient leads to the Bethe variational
problem (BVP):

max {(9, T) + ZHS(TS Z Lse(Tst }
rel(@) seV (s,t)eE

e A simple structured problem (differentiable & constraint set is a simple
convex polytope)

e Loopy BP can be derived as am iterative method for solving a

Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for
tree graphs
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Geometry of BP :

e Consider the following assignment of pseudo-marginals
e Can easily verify 7 € L(G) lgg]

0.4 0.1
0.1 04

3

2

e However, 7 € M(G) (need a bit more work) [0_4 0_1]
0.1 0.4

1

e T[ree-based outer bound
e For any graph, L(G) C M(G) lo.ﬂ l0.4 0.1] lo_g,]

0.5 0.5
e Equality holds if and only if the graph is a tree

Vs
e Question: does solution to the BVP ever fall / \
into the gap? "
e Yes, for any element of outer bound LL(G), it is \ /
possible to construct a distribution with it as a
BP fixed point (Wainwright et. al. 2003)
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Inexactness of Bethe Entropy Approximation | °

£

e Consider a fully connected graph with

ps(zs) = (0.5 0.5] for s=1,2,3,4 1 4
0.5 0
st\ds) — ) E.
tst(Ts, Tt) 0 05 V (s,t) € > ;

o ltis globally valid: 7 € M(G); realized by the distribution that places
mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

o Hpethe(t) = 4log2 — 6log2 = —2log?2 < 0,
o —A*(u) =log2 > 0.
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Discussions e’

e This connection provides a principled basis for applying the
sum-product algorithm for loopy graphs

e However,

e Although there is always a fixed point of loopy BP, there is no
guarantees on the convergence of the algorithm on loopy graphs

e The Bethe variational problem is usually non-convex. Therefore, there
are no guarantees on the global optimum

e Generally, no guarantees that Apetne(6) is a lower bound of A(6)

e Nevertheless,

e The connection and understanding suggest a number of avenues for

improving upon the ordinary sum-product algorithm, via progressively
better approximations to the entropy function and outer bounds on the
marginal polytope (Kikuchi clustering)
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Summary o

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy

e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)
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Summary -

o “Off-the-Shelf” solution to inference problem?

e Mean field: yields lower bound on the log partition function (likelihood
function); widely used as an approximate E-step in EM algorithm

e Sum-product: works well if the graph is locally tree-like and typically
performs better than mean field; successfully used in error-correcting
coding and low-level vision community
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