
School of Computer Science

1

Probabilistic Graphical Models

 Variational Inference IV:
 Variational Principle II

Junming Yin
Lecture 17, March 21, 2012

Reading:

X1

X4

X2 X3

X4

X2 X3

X1
X1

X2

X1

X3

X1

X4

X2 X3

X4

X2 X3

X1
X1

X2

X1

X3

Recap: Variational Inference
l  Variational formulation

l  : the marginal polytope, difficult to characterize
l  : the negative entropy function, no explicit form

l  Mean field method: non-convex inner bound and exact form of
entropy

l  Bethe approximation and loopy belief propagation: polyhedral
outer bound and non-convex Bethe approximation

2

A(θ) = sup
µ∈M

{θTµ−A∗(µ)}

M
A∗

3

Mean Field Approximation

Tractable Subgraphs
l  Definition: A subgraph F of the graph G is tractable if it is

feasible to perform exact inference

l  Example:

4

Mean Field Methods
l  For an exponential family with sufficient statistics defined

on graph G, the set of realizable mean parameter set

l  For a given tractable subgraph F, a subset of mean
parameters of interest

l  Inner approximation
l  Mean field solves the relaxed problem

l  is the exact dual function restricted to

5

φ

M(G;φ) := {µ ∈ Rd | ∃p s.t. Ep[φ(X)] = µ}

M(F ;φ)o ⊆ M(G;φ)o

5.2 Optimization and Lower Bounds 131

for any density q satisfying this moment-matching condition, we may
optimize over the choice of q: by Theorem 3.4, doing so yields the
exponential family density q∗(x) = pθ(µ)(x), for which H(q∗) = −A∗(µ)
by construction.

Since the dual function A∗ typically lacks an explicit form, it is not
possible, at least in general, to compute the lower bound (5.6). The
mean field approach circumvents this difficulty by restricting the choice
of µ to the tractable subset MF (G), for which the dual function has an
explicit form. For compactness in notation, we define A∗

F = A∗∣∣
MF (G),

corresponding to the dual function restricted to the set MF (G). As
long as µ belongs to MF (G), then the lower bound (5.6) involves A∗

F ,
and hence can be computed easily.

The next step of the mean field method is the natural one: find the
best approximation, as measured in terms of the tightness of the lower
bound (5.6). More precisely, the best lower bound from within MF (G)
is given by

max
µ∈MF (G)

{
〈µ, θ〉 − A∗

F (µ)
}
. (5.8)

The corresponding value of µ is defined to be the mean field approxi-
mation to the true mean parameters.

In Section 5.3, we illustrate the use of this generic procedure in
obtaining lower bounds and approximate mean parameters for various
types of graphical models.

5.2.2 Mean Field and Kullback–Leibler Divergence

An important alternative interpretation of the mean field optimization
problem (5.8) is as minimizing the Kullback–Leibler (KL) divergence
between the approximating (tractable) distribution and the target dis-
tribution. In order to make this connection clear, we first digress to dis-
cuss various forms of the KL divergence for exponential family models.

The conjugate duality between A and A∗, as characterized in The-
orem 3.4, leads to several alternative forms of the KL divergence for
exponential family members. Given two distributions with densities q
and p with respect to a base measure ν, the standard definition of the

5.2 Optimization and Lower Bounds 131

for any density q satisfying this moment-matching condition, we may
optimize over the choice of q: by Theorem 3.4, doing so yields the
exponential family density q∗(x) = pθ(µ)(x), for which H(q∗) = −A∗(µ)
by construction.

Since the dual function A∗ typically lacks an explicit form, it is not
possible, at least in general, to compute the lower bound (5.6). The
mean field approach circumvents this difficulty by restricting the choice
of µ to the tractable subset MF (G), for which the dual function has an
explicit form. For compactness in notation, we define A∗

F = A∗∣∣
MF (G),

corresponding to the dual function restricted to the set MF (G). As
long as µ belongs to MF (G), then the lower bound (5.6) involves A∗

F ,
and hence can be computed easily.

The next step of the mean field method is the natural one: find the
best approximation, as measured in terms of the tightness of the lower
bound (5.6). More precisely, the best lower bound from within MF (G)
is given by

max
µ∈MF (G)

{
〈µ, θ〉 − A∗

F (µ)
}
. (5.8)

The corresponding value of µ is defined to be the mean field approxi-
mation to the true mean parameters.

In Section 5.3, we illustrate the use of this generic procedure in
obtaining lower bounds and approximate mean parameters for various
types of graphical models.

5.2.2 Mean Field and Kullback–Leibler Divergence

An important alternative interpretation of the mean field optimization
problem (5.8) is as minimizing the Kullback–Leibler (KL) divergence
between the approximating (tractable) distribution and the target dis-
tribution. In order to make this connection clear, we first digress to dis-
cuss various forms of the KL divergence for exponential family models.

The conjugate duality between A and A∗, as characterized in The-
orem 3.4, leads to several alternative forms of the KL divergence for
exponential family members. Given two distributions with densities q
and p with respect to a base measure ν, the standard definition of the

max
τ∈MF (G)

{�τ, θ� −A∗
F (τ)}

M(F ;φ) := {τ ∈ Rd | τ = Eθ[φ(X)] for some θ ∈ Ω(F)}

Example: Naïve Mean Field for Ising Model

l  Ising model in {0,1} representation

l  Mean parameters

l  For fully disconnected graph F,

l  The dual decomposes into sum, one for each node

6

p(x) ∝ exp





�

s∈V

xsθs +
�

(s,t)∈E

xsxtθst






Geometry of mean field

• let H represent a tractable subgraph (i.e., for which

A∗ has explicit form)

• let Mtr(G; H) represent tractable mean parameters:

Mtr(G; H) := {µ| µ = Eθ[φ(x)] s. t. θ respects H}.

1 2

65

9

3

4

7 8

1 2

65

9

3

4

7 8

PSfrag replacements

µe

M

Mtr
• under mild conditions, Mtr is a non-

convex inner approximation to M

• optimizing over Mtr (as opposed to M)

yields lower bound :

A(θ) ≥ sup
eµ∈Mtr

˘
〈θ, eµ〉 − A∗(eµ)

¯
.

47

Example: Ising Model

!  Sufficient statistics:

!  Mean parameters:

!  Two-node Ising model
!  Convex hull representation

!  Half-plane representation

!  Exercise: three-node Ising model

12

3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].

3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].

56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1

−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0

−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1

−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0

−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

X1 X2

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 ≥ u12

µ2 ≥ u12

u12 ≥ 0

1 + µ12 ≥ u1 + u2

1

A∗
F (τ) =

�

s∈V

[τs log τs + (1− τs) log(1− τs)]

MF (G) := {τ ∈ R|V |+|E| | 0 ≤ τs ≤ 1, ∀s ∈ V, τst = τsτt, ∀(s, t) ∈ E}

Example: Naïve Mean Field for Ising Model

l  Mean field problem

l  The same objective function as in free energy based
approach

l  The naïve mean field update equations

l  Also yields lower bound on log partition function

7

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






1

τs ← σ



θs +
�

t∈N(s)

θsτt





5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for
some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this
polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset
of M(G) — must be a nonconvex set. To establish this claim, we first
observe that MF (G) contains all of the extreme points µx = φ(x) of
the polytope M(G). Indeed, the extreme point µx is realized by the
distribution that places all its mass on x, and such a distribution is
Markov with respect to any graph. Therefore, if MF (G) were a con-
vex set, then it would have to contain any convex combination of such
extreme points. But from the representation (5.24), taking convex com-
binations of all such extreme points generates the full polytope M(G).
Therefore, whenever MF (G) is a proper subset of M(G), it cannot be
a convex set.

Consequently, nonconvexity is an intrinsic property of mean field
approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

φ(e)

Geometry of Mean Field
l  Mean field optimization is always non-convex for any

exponential family in which the state space is finite

l  Recall the marginal polytope is a convex hull

l  contains all the extreme points
l  If it is a strict subset, then it must be non-convex

l  Example: two-node Ising model

l  It has a parabolic cross section along , hence non-convex

8

Xm

M(G) = conv{φ(e); e ∈ Xm}
MF (G)

MF (G) = {0 ≤ τ1 ≤ 1, 0 ≤ τ2 ≤ 1, τ12 = τ1τ2}

τ1 = τ2

9

Bethe Approximation
and Sum-Product

Historical Information

l  Bethe (1935): a physicist who first developed the ideas related
to the loopy belief propagation in the Bethe approximation; not
fully appreciated outside the physics community until recently

l  Gallager (1963): an electrical engineer who explored the loopy
belief propagation in his work on LDPC (Low Density Parity
Check) codes

l  Yedidia (2001): a physicist who made an explicit connection
from the loopy belief propagation to the Bethe approximation
and further developed generalized belief propagation
algorithm

10

Error Correcting Codes
l  Graphical model for (7,4) Hamming code

l  Potential functions with hard constraint

l  Marginal probabilities = A posterior bit probabilities

11

864 J.S. Yedidia

Fig. 3 Any observed variable nodes in a factor graph can be absorbed as parameters in the factor nodes that
they are connected to, leaving only “hidden” variable nodes, and factor nodes that depend on the observations

Fig. 4 A factor graph for the (N = 7, k = 4) Hamming code, which has seven codeword bits, of which the
left-most four are information bits, and the last three are parity bits

In the following examples, we will also describe some properties of BP message-passing
algorithms, anticipating our more extensive discussion in future sections.

4.1 Error Correcting Codes

Our first example is a factor graph for an error correcting code—the simple (N = 7, k = 4)

Hamming code shown in Fig. 4. In this code, there are seven “hidden” variable nodes that
represent the seven unknown transmitted bits. The first four of those bits are information
bits that encode the original message, the other three are additional parity bits that can be
computed from the information bits using the parity check factor nodes. The three parity
check factor nodes are hard constraints that force the sum of the bits connected to them to
equal 0 modulo 2. There are also seven “soft” channel evidence factor nodes that give the
a priori probability that each of the hidden codeword bits is equal to a one or zero, given the
observed received bits.

The goal will be to find the most likely values of the seven hidden transmitted bits,
given the channel evidence and the fact that they must be consistent with the parity check
constraints.

Such factor graphs were introduced into coding theory in 1981 by Tanner [68], to describe
and visualize the low-density parity-check (LDPC) codes and the BP decoder for LDPC
codes that had been introduced earlier by Gallager in 1963 [23]. LDPC codes were given
their name because each parity check is only connected to a small number of codeword bits.
LDPC codes and their factor graphs are similar to the Hamming code in Fig. 4, except that
the number of codeword bits is usually on the order of a few thousand in practical LDPC
codes, and the codeword bits are not simply divided into information bits and extra parity
check bits. BP decoders of LDPC codes are very practically significant, because if they are
properly designed, their performance can closely approach the Shannon limit, and they can
be implemented in modern hardware [60, 64].

2.4 Applications 23

For instance, multiscale quad trees, such as that illustrated in
Figure 2.8(b), can be used to approximate lattice models [262]. The
advantage of such a multiscale model is in permitting the application
of efficient tree algorithms to perform exact inference. The trade-off
is that the model is imperfect, and can introduce artifacts into image
reconstructions.

2.4.7 Error-Correcting Coding

A central problem in communication theory is that of transmitting
information, represented as a sequence of bits, from one point to
another. Examples include transmission from a personal computer over
a network, or from a satellite to a ground position. If the communication
channel is noisy, then some of the transmitted bits may be corrupted. In
order to combat this noisiness, a natural strategy is to add redundancy
to the transmitted bits, thereby defining codewords. In principle, this
coding strategy allows the transmission to be decoded perfectly even
in the presence of some number of errors.

Many of the best codes in use today, including turbo codes and low-
density parity check codes [e.g., 87, 166], are based on graphical models.
Figure 2.9(a) provides an illustration of a very small parity check code,
represented here in the factor graph formalism [142]. (A somewhat
larger code is shown in Figure 2.9(b)). On the left, the six white nodes
represent the bits xi that comprise the codewords (i.e., binary sequences
of length six), whereas the gray nodes represent noisy observations
yi associated with these bits. On the right, each of the black square
nodes corresponds to a factor ψstu that represents the parity of the
triple {xs,xt,xu}. This parity relation, expressed mathematically as
xs ⊕ xt ⊕ xu ≡ zstu in modulo two arithmetic, can be represented as an
undirected graphical model using a compatibility function of the form:

ψstu(xs,xt,xu) :=

{
1 if xs ⊕ xt ⊕ xu = 1
0 otherwise.

For the code shown in Figure 2.9, the parity checks range over the set
of triples {1,3,4}, {1,3,5}, {2,4,6}, and {2,5,6}.

The decoding problem entails estimating which codeword was trans-
mitted on the basis of a vector y = (y1,y2, . . . ,ym) of noisy observations.

Example of LDPC Decoding

12

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

562 47 — Low-Density Parity-Check Codes

Figure 47.3. Demonstration of encoding with a rate-1/2 Gallager code. The encoder is derived from
a very sparse 10 000 × 20 000 parity-check matrix with three 1s per column (figure 47.4).
(a) The code creates transmitted vectors consisting of 10 000 source bits and 10 000 parity-
check bits. (b) Here, the source sequence has been altered by changing the first bit. Notice
that many of the parity-check bits are changed. Each parity bit depends on about half of
the source bits. (c) The transmission for the case s = (1, 0, 0, . . . , 0). This vector is the
difference (modulo 2) between transmissions (a) and (b). [Dilbert image Copyright c©1997
United Feature Syndicate, Inc., used with permission.]

(a) →

parity bits





(b) (c)

satisfying Hx̂ = zmod 2 that is not equal to the true x. ‘Detected’ errors
occur if the algorithm runs for the maximum number of iterations without
finding a valid decoding. Undetected errors are of scientific interest because
they reveal distance properties of a code. And in engineering practice, it would
seem preferable for the blocks that are known to contain detected errors to be
so labelled if practically possible.

Cost. In a brute-force approach, the time to create the generator matrix
scales as N 3, where N is the block size. The encoding time scales as N 2, but
encoding involves only binary arithmetic, so for the block lengths studied here
it takes considerably less time than the simulation of the Gaussian channel.
Decoding involves approximately 6Nj floating-point multiplies per iteration,
so the total number of operations per decoded bit (assuming 20 iterations)
is about 120t/R, independent of blocklength. For the codes presented in the
next section, this is about 800 operations.

The encoding complexity can be reduced by clever encoding tricks invented
by Richardson and Urbanke (2001b) or by specially constructing the parity-
check matrix (MacKay et al., 1999).

The decoding complexity can be reduced, with only a small loss in perfor-
mance, by passing low-precision messages in place of real numbers (Richardson
and Urbanke, 2001a).

47.4 Pictorial demonstration of Gallager codes

Figures 47.3–47.7 illustrate visually the conditions under which low-density
parity-check codes can give reliable communication over binary symmetric
channels and Gaussian channels. These demonstrations may be viewed as
animations on the world wide web.1

1http://www.inference.phy.cam.ac.uk/mackay/codes/gifs/

Example of LDPC Decoding

13

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

564 47 — Low-Density Parity-Check Codes

Figure 47.5. Iterative probabilistic decoding of a low-density parity-check code for a transmission
received over a channel with noise level f = 7.5%. The sequence of figures shows the best
guess, bit by bit, given by the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, and 13 iterations.
The decoder halts after the 13th iteration when the best guess violates no parity checks.
This final decoding is error free.

received:

0 1 2 3

10 11 12 13

→ decoded:

0.1

0.01

0.001

0.0001

1e-05

1e-06

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y
of

 d
ec

od
er

 e
rro

r

Rate

GV
C

Shannon limit

low-density
parity-check code

Figure 47.6. Error probability of
the low-density parity-check code
(with error bars) for binary
symmetric channel with f = 7.5%,
compared with algebraic codes.
Squares: repetition codes and
Hamming (7, 4) code; other
points: Reed–Muller and BCH
codes.

Sum-Product/Belief Propagation Algorithm

l  Message passing rule:

l  Marginals:

l  Exact for trees, but approximate for loopy graphs (so called
loopy belief propagation)

l  Question:
l  How is the algorithm on trees related to variational principle?
l  What is the algorithm doing for graphs with cycles?

14

28 Background

into a product of subproblems, one for each of the subtrees in the set
{Tt, t ∈ N(s)}, in the following way:

µs(xs) = κ ψs(xs)
∏

t∈N(s)

M∗
ts(xs) (2.8a)

M∗
ts(xs) :=

∑

x′
Vt

ψst(xs,x
′
t) p(x′

Vt
;Tt) (2.8b)

In these equations, κ denotes a positive constant chosen to ensure that
µs normalizes properly. For fixed xs, the subproblem defining M∗

ts(xs) is
again a tree-structured summation, albeit involving a subtree Tt smaller
than the original tree T . Therefore, it too can be broken down recur-
sively in a similar fashion. In this way, the marginal at node s can be
computed by a series of recursive updates.

Rather than applying the procedure described above to each node
separately, the sum-product algorithm computes the marginals for all
nodes simultaneously and in parallel. At each iteration, each node t
passes a “message” to each of its neighbors u ∈ N(t). This message,
which we denote by Mtu(xu), is a function of the possible states xu ∈ Xu

(i.e., a vector of length |Xu| for discrete random variables). On the full
graph, there are a total of 2|E| messages, one for each direction of each
edge. This full collection of messages is updated, typically in parallel,
according to the recursion

Mts(xs) ← κ
∑

x′
t

{
ψst(xs,x

′
t)ψt(x′

t)
∏

u∈N(t)/s

Mut(x′
t)

}
, (2.9)

where κ > 0 again denotes a normalization constant. It can
be shown [192] that for tree-structured graphs, iterates gener-
ated by the update (2.9) will converge to a unique fixed point
M∗ = {M∗

st,M
∗
ts, (s, t) ∈ E} after a finite number of iterations. More-

over, component M∗
ts of this fixed point is precisely equal, up to a

normalization constant, to the subproblem defined in Equation (2.8b),
which justifies our abuse of notation post hoc. Since the fixed point
M∗ specifies the solution to all of the subproblems, the marginal µs at
every node s ∈ V can be computed easily via Equation (2.8a).

Max-product algorithm: Suppose that the summation in the
update (2.9) is replaced by a maximization. The resulting max-product

28 Background

into a product of subproblems, one for each of the subtrees in the set
{Tt, t ∈ N(s)}, in the following way:

µs(xs) = κ ψs(xs)
∏

t∈N(s)

M∗
ts(xs) (2.8a)

M∗
ts(xs) :=

∑

x′
Vt

ψst(xs,x
′
t) p(x′

Vt
;Tt) (2.8b)

In these equations, κ denotes a positive constant chosen to ensure that
µs normalizes properly. For fixed xs, the subproblem defining M∗

ts(xs) is
again a tree-structured summation, albeit involving a subtree Tt smaller
than the original tree T . Therefore, it too can be broken down recur-
sively in a similar fashion. In this way, the marginal at node s can be
computed by a series of recursive updates.

Rather than applying the procedure described above to each node
separately, the sum-product algorithm computes the marginals for all
nodes simultaneously and in parallel. At each iteration, each node t
passes a “message” to each of its neighbors u ∈ N(t). This message,
which we denote by Mtu(xu), is a function of the possible states xu ∈ Xu

(i.e., a vector of length |Xu| for discrete random variables). On the full
graph, there are a total of 2|E| messages, one for each direction of each
edge. This full collection of messages is updated, typically in parallel,
according to the recursion

Mts(xs) ← κ
∑

x′
t

{
ψst(xs,x

′
t)ψt(x′

t)
∏

u∈N(t)/s

Mut(x′
t)

}
, (2.9)

where κ > 0 again denotes a normalization constant. It can
be shown [192] that for tree-structured graphs, iterates gener-
ated by the update (2.9) will converge to a unique fixed point
M∗ = {M∗

st,M
∗
ts, (s, t) ∈ E} after a finite number of iterations. More-

over, component M∗
ts of this fixed point is precisely equal, up to a

normalization constant, to the subproblem defined in Equation (2.8b),
which justifies our abuse of notation post hoc. Since the fixed point
M∗ specifies the solution to all of the subproblems, the marginal µs at
every node s ∈ V can be computed easily via Equation (2.8a).

Max-product algorithm: Suppose that the summation in the
update (2.9) is replaced by a maximization. The resulting max-product

Tree Graphical Models
l  Discrete variables on a tree

l  Sufficient statistics:

l  Exponential representation of distribution:

where

l  Mean parameters are marginal probabilities:

15

B: Belief propagation/sum-product on trees

• discrete variables Xs ∈ {0, 1, . . . , ms − 1} on a tree T = (V, E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs × Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

where θs(xs) :=
P

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• the marginals must belong to the following marginal polytope:

MARG(T) := { µ ≥ 0 |
X

xs

µs(xs) = 1,
X

xt

µst(xs, xt) = µs(xs) },

38

Examples of M: Discrete MRF

• sufficient statistics:
I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for(s, t) ∈ E, (j, k) ∈ Xs × Xt

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

PSfrag replacements aj

MARG(G)

〈aj , µ〉 = bj

µe • denote the set of realizable µs and µst

by MARG(G)

• refer to it as the marginal polytope

• extremely difficult to characterize for

general graphs

30

Example: Discrete MRF

!  In exponential form

!  Why is this representation is useful? How is it related to inference
problem?
!  Computing the expectation of sufficient statistics (mean parameters)

given the canonical parameters yields the marginals

21

Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

19

Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

19

B: Belief propagation/sum-product on trees

• discrete variables Xs ∈ {0, 1, . . . , ms − 1} on a tree T = (V, E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs × Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

where θs(xs) :=
P

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• the marginals must belong to the following marginal polytope:

MARG(T) := { µ ≥ 0 |
X

xs

µs(xs) = 1,
X

xt

µst(xs, xt) = µs(xs) },

38

3.4 Mean Parameterization and Inference Problems 59

We refer to the sufficient statistics (3.34) as the standard overcom-
plete representation. Its overcompleteness was discussed previously in
Example 3.2.

With this choice of sufficient statistics, the mean parameters take a
very intuitive form: in particular, for each node s ∈ V

µs;j = Ep[I j(Xs)] = P[Xs = j] ∀j ∈ Xs, (3.35)

and for each edge (s, t) ∈ E, we have

µst;jk = Ep[I st;jk(Xs,Xt)] = P[Xs = j,Xt = k] ∀(j,k) ∈ Xs ∈ Xt.
(3.36)

Thus, the mean parameters correspond to singleton marginal distribu-
tions µs and pairwise marginal distributions µst associated with the
nodes and edges of the graph. In this case, we refer to the set M as the
marginal polytope associated with the graph, and denote it by M(G).
Explicitly, it is given by

M(G) := {µ ∈ Rd | ∃p such that (3.35) holds ∀(s;j), and

(3.36) holds ∀(st;jk
}
. (3.37)

Note that the correlation polytope for the Ising model presented
in Example 3.8 is a special case of a marginal polytope, obtained
for Xs ∈ {0,1} for all nodes s. The only difference is we have defined
marginal polytopes with respect to the standard overcomplete basis of
indicator functions, whereas the Ising model is usually parameterized as
a minimal exponential family. The codeword polytope of Example 3.9 is
another special case of a marginal polytope. In this case, the reduction
requires two steps: first, we convert the factor graph representation of
the code — for instance, as shown in Figure 3.7(a) — to an equiva-
lent pairwise Markov random field, involving binary variables at each
bit node, and higher-order discrete variables at each factor node. (See
Appendix E.3 for details of this procedure for converting from factor
graphs to pairwise MRFs.) The marginal polytope associated with this
pairwise MRF is simply a lifted version of the codeword polytope. We
discuss these and other examples of marginal polytopes in more detail
in later sections.

3.4 Mean Parameterization and Inference Problems 59

We refer to the sufficient statistics (3.34) as the standard overcom-
plete representation. Its overcompleteness was discussed previously in
Example 3.2.

With this choice of sufficient statistics, the mean parameters take a
very intuitive form: in particular, for each node s ∈ V

µs;j = Ep[I j(Xs)] = P[Xs = j] ∀j ∈ Xs, (3.35)

and for each edge (s, t) ∈ E, we have

µst;jk = Ep[I st;jk(Xs,Xt)] = P[Xs = j,Xt = k] ∀(j,k) ∈ Xs ∈ Xt.
(3.36)

Thus, the mean parameters correspond to singleton marginal distribu-
tions µs and pairwise marginal distributions µst associated with the
nodes and edges of the graph. In this case, we refer to the set M as the
marginal polytope associated with the graph, and denote it by M(G).
Explicitly, it is given by

M(G) := {µ ∈ Rd | ∃p such that (3.35) holds ∀(s;j), and

(3.36) holds ∀(st;jk
}
. (3.37)

Note that the correlation polytope for the Ising model presented
in Example 3.8 is a special case of a marginal polytope, obtained
for Xs ∈ {0,1} for all nodes s. The only difference is we have defined
marginal polytopes with respect to the standard overcomplete basis of
indicator functions, whereas the Ising model is usually parameterized as
a minimal exponential family. The codeword polytope of Example 3.9 is
another special case of a marginal polytope. In this case, the reduction
requires two steps: first, we convert the factor graph representation of
the code — for instance, as shown in Figure 3.7(a) — to an equiva-
lent pairwise Markov random field, involving binary variables at each
bit node, and higher-order discrete variables at each factor node. (See
Appendix E.3 for details of this procedure for converting from factor
graphs to pairwise MRFs.) The marginal polytope associated with this
pairwise MRF is simply a lifted version of the codeword polytope. We
discuss these and other examples of marginal polytopes in more detail
in later sections.

µst(xs, xt) =
�

(j,k)∈Xs×Xt

µst;jkIjk(xs, xt) = P(Xs = xs, Xt = xt)

µs(xs) =
�

j∈Xs

µs;jIj(xs) = P(Xs = xs)

B: Belief propagation/sum-product on trees

• discrete variables Xs ∈ {0, 1, . . . , ms − 1} on a tree T = (V, E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs × Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

where θs(xs) :=
P

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• the marginals must belong to the following marginal polytope:

MARG(T) := { µ ≥ 0 |
X

xs

µs(xs) = 1,
X

xt

µst(xs, xt) = µs(xs) },

38

Marginal Polytope for Trees
l  Recall marginal polytope for general graphs

l  By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

l  In particular, if , then

has the corresponding marginals

16

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 ≥ u12

µ2 ≥ u12

u12 ≥ 0

1 + µ12 ≥ u1 + u2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

1

¡+Brief Article+¿

¡+The Author+¿

March 17, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

1

µ ∈ M(T)

4.1 Sum-Product and Bethe Approximation 79

Proof. Consider an element µ of the full marginal polytope M(G):
clearly, any such vector must satisfy the normalization and pair-
wise marginalization conditions defining the set L(G), from which
we conclude that M(G) ⊆ L(G). In order to demonstrate the reverse
inclusion for a tree-structured graph T , let µ be an arbitrary element
of L(T); we need to show that µ ∈ M(T). By definition of L(T), the
vector µ specifies a set of locally consistent singleton marginals µs for
vertices s ∈ V and pairwise marginals µst for edges (s, t) ∈ E. By the
junction tree theorem, we may use them to form a distribution, Markov
with respect to the tree, as follows:

pµ(x) :=
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs,xt)
µs(xs)µt(xt)

. (4.8)

(We take 0/0 := 0 in cases of zeros in the elements of µ.) It is a
consequence of the junction tree theorem or can be verified directly
via an inductive “leaf-stripping” argument that with this choice of
pµ, we have Epµ [I j(Xs)] = µs(xs) for all s ∈ V and j ∈ Xs, as well
as Epµ [I jk(Xs,Xt)] = µst(xs,xt) for all (s, t) ∈ E, and (j,k) ∈ Xs × Xt.
Therefore, the distribution (4.8) provides a constructive certificate of
the membership µ ∈ M(T), which establishes that L(T) = M(T).

For a graph G with cycles, in sharp contrast to the tree case, the
set L(G) is a strict outer bound on M(G), in that there exist vectors
τ ∈ L(G) that do not belong to M(G), for which reason we refer to
members τ of L(G) as pseudomarginals. The following example illus-
trates the distinction between globally realizable marginals and pseu-
domarginals.

Example 4.1 (L(G) versus M(G)). Let us explore the relation
between the two sets on the simplest graph for which they fail to
be equivalent — namely, the single cycle on three vertices, denoted
by C3. Considering the binary random vector X ∈ {0,1}3, note that
each singleton pseudomarginal τs, for s = 1,2,3, can be viewed as
a 1 × 2 vector, whereas each pairwise pseudomarginal τst, for edges
(s, t) ∈ {(12),(13),(23)} can be viewed as a 2 × 2 matrix. We define

Decomposition of Entropy for Trees

l  For trees, the entropy decomposes as

l  The dual function has an explicit form

17

EECS 281A / STAT 241A Lecture 27 — December 7 Fall 2005

27.4 Bethe Entropy Approximation

First lets think about trees – we know that any distribution on a tree factorizes as:

p(x; µ) =
�

s∈V

µs(xs)
�

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
(27.24)

For trees entropy is written as:

H(p(x; µ)) = −
�

x

p(x; µ) log p(x; µ) (27.25)

=
�

s∈V

�
−

�

xs

µs(xs) log µs(xs)

� �� �
Hs(µs)

�
−

−
�

(s,t)∈E

� �

xs,xt

µst(xs, xt) log
µst(xs, xt)

µs(xs)µt(xt)
� �� �

Ist(µst), KL-Divergence

�
(27.26)

=
�

s∈V

Hs(µs)−
�

(s,t)∈E

Ist(µst) (27.27)

Where the Ist(µst) term can be thought of as a measure of independence or ”mutual infor-
mation” between µst and µs, µt.

Bethe Entropy Approximation:

HBethe(p(x; µ)) ≈
�

s∈V

Hs(µs)−
�

(s,t)∈E

Ist(/must) (27.28)

Note that this is exact for trees, but an approximation for a graph with cycles.

Bethe Approximation:

max
τs,τst∈LOCAL(G)

{

Linear term� �� ��
s ∈ V

�

j

θs(j)τs(j) +
�

(s,t)∈E

�

j,i

θst(i, j)τst(i, j) +

Bethe Entropy� �� �
HBethe(τ) }

� �� �
F (τ ;θ)

(27.29)

Now we will formulate the Lagrangian to solve this, focusing on the marginalization con-
straint first. We will see soon how the multipliers exponentiated are like message passing in

27-7

A
∗(µ) = −H(p(x;µ))

Exact Variational Principle for Trees

l  Variational formulation

l  Assign Lagrange multiplier for the normalization constraint

 ; and for each marginalization
constraint

l  The Lagrangian has the form

18

λss

λts(xs)

¡+Brief Article+¿

¡+The Author+¿

March 18, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

A(θ) = max
µ∈M(T)

�
�θ, µ�+

�

s∈V
Hs(µs)− Ist(µst)

�

Css(µ) := 1−
�

xs
µs(xs) = 0

1

¡+Brief Article+¿

¡+The Author+¿

March 18, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

A(θ) = max
µ∈M(T)

�
�θ, µ�+

�

s∈V
Hs(µs)− Ist(µst)

�

Css(µ) := 1−
�

xs
µs(xs) = 0, Cts(xs;µ) := µs(xs)−

�
xt
µst(xs, xt) = 0

1

¡+Brief Article+¿

¡+The Author+¿

March 18, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

A(θ) = max
µ∈M(T)




�θ, µ�+
�

s∈V
Hs(µs)−

�

(s,t)∈E

Ist(µst)






Css(µ) := 1−
�

xs
µs(xs) = 0, Cts(xs;µ) := µs(xs)−

�
xt
µst(xs, xt) = 0

L(µ,λ) = �θ, µ�+
�

s∈V
Hs(µs)− Ist(µst)

1

¡+Brief Article+¿

¡+The Author+¿

March 18, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

A(θ) = max
µ∈M(T)




�θ, µ�+
�

s∈V
Hs(µs)−

�

(s,t)∈E

Ist(µst)






Css(µ) := 1−
�

xs
µs(xs) = 0, Cts(xs;µ) := µs(xs)−

�
xt
µst(xs, xt) = 0

L(µ,λ) = �θ, µ�+
�

s∈V
Hs(µs)−

�

(s,t)∈E

Ist(µst) +
�

s∈V
λssCss(µ)

1

Exact variational principle on trees

• putting the pieces back together yields:

A(θ) = max
µ∈MARG(T)

˘
〈θ, µ〉 +

X

s∈V

Hs(µs) −
X

(s,t)∈E(T)

Ist(µst)
¯
.

• let’s try to solve this problem by a (partial) Lagrangian formulation

• assign a Lagrange multiplier λts(xs) for each constraint

Cts(xs) := µs(xs) −
P

xt
µst(xs, xt) = 0

• will enforce the normalization (
P

xs
µs(xs) = 1) and non-negativity

constraints explicitly

• the Lagrangian takes the form:

L(µ; λ) = 〈θ, µ〉 +
X

s∈V

Hs(µs) −
X

(s,t)∈E(T)

Ist(µst)

+
X

(s,t)∈E

ˆ X

xt

λst(xt)Cst(xt) +
X

xs

λts(xs)Cts(xs)
˜

40

Lagrangian Derivation
l  Taking the derivatives of the Lagrangian w.r.t. and

l  Setting them to zeros yields

19

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

Css(µ) := 1−
�

xs
µs(xs) = 0, Cts(xs;µ) := µs(xs)−

�
xt
µst(xs, xt) = 0

L(µ,λ) = �θ, µ�+
�

s∈V
Hs(µs)−

�

(s,t)∈E

Ist(µst) +
�

s∈V
λssCss(µ)

µs(xs) ∝ exp{θs(xs)}
�

t∈N (s)

exp{λts(xs)� �� �
Mts(xs)

}

2

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

Lagrangian Derivation (continued)

l  Adjusting the Lagrange multipliers or messages to enforce

yields

l  Conclusion: the message passing updates are a Lagrange
method to solve the stationary condition of the variational
formulation

20

¡+Brief Article+¿

¡+The Author+¿

March 18, 2012

µ1 ≥ µ12

µ2 ≥ µ12

µ12 ≥ 0

1 + µ12 ≥ µ1 + µ2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

A(θ) ≥ max
(τ1,...,τm)∈[0,1]m





�

s∈V
θsτs +

�

(s,t)∈E

θstτsτt −A
∗
F (τ)






M(T) =

�
µ ≥ 0 |

�

xs

µs(xs) = 1,
�

xt

µst(xs, xt) = µs(xs)

�

A(θ) = max
µ∈M(T)

�
�θ, µ�+

�

s∈V
Hs(µs)− Ist(µst)

�

Css(µ) := 1−
�

xs
µs(xs) = 0, Cts(xs;µ) := µs(xs)−

�
xt
µst(xs, xt) = 0

1

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)

41

BP on Arbitrary Graphs
l  Two main difficulties of the variational formulation

l  The marginal polytope is hard to characterize, so let’s use the tree-
based outer bound

These locally consistent vectors are called pseudo-marginals.

l  Exact entropy lacks explicit form, so let’s approximate it by the
exact expression for trees

21

A(θ) = sup
µ∈M

{θTµ−A∗(µ)}

B: Belief propagation on arbitrary graphs

Two main ingredients:

1. Exact entropy −A∗(µ) is intractable, so let’s approximate it.

The Bethe approximation A∗
Bethe(µ) ≈ A∗(µ) is based on the exact

expression for trees:

−A∗
Bethe(µ) =

∑

s∈V

Hs(µs) −
∑

(s,t)∈E

Ist(µst).

2. The marginal polytope MARG(G) is also difficult to characterize, so

let’s use the following (tree-based) outer bound:

LOCAL(G) := { τ ≥ 0 |
∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs) },

Note: Use τ to distinguish these locally consistent pseudomarginals from globally

consistent marginals.

51

M

L(G) =

�
τ ≥ 0 |

�

xs

τs(xs) = 1,
�

xt

τst(xs, xt) = τs(xs)

�

τ

82 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

recall from the proof of Proposition 4.1 the factorization (4.8) of any
tree-structured MRF distribution in terms of marginal distributions
{µs,s ∈ V } and {µst,(s, t) ∈ E} on the node and edges, respectively, of
the tree. These marginal distributions correspond to the mean parame-
ters under the canonical overcomplete sufficient statistics (3.34). Thus,
for a tree-structured MRF, we can compute the (negative) dual value
−A∗(µ) directly, simply by computing the entropy H(pµ) of the dis-
tribution (4.8). Denoting by Eµ the expectation under the distribu-
tion (4.8), we obtain

H(pµ) = −A∗(µ) = Eµ[− logpµ(X)]

=
∑

s∈V

Hs(µs) −
∑

(s,t)∈E

Ist(µst). (4.11)

The different terms in this expansion are the singleton entropy

Hs(µs) := −
∑

xs∈Xs

µs(xs) logµs(xs) (4.12)

for each node s ∈ V , and the mutual information

Ist(µst) :=
∑

(xs,xt)∈Xs×Xt

µst(xs,xt) log
µst(xs,xt)

µs(xs)µt(xt)
(4.13)

for each edge (s, t) ∈ E. Consequently, for a tree-structured graph, the
dual function A∗ can be expressed as an explicit and easily computable
function of the mean parameters µ.

With this background, the Bethe approximation to the entropy of
an MRF with cycles is easily described: it simply assumes that decom-
position (4.11) is approximately valid for a graph with cycles. This
assumption yields the Bethe entropy approximation

−A∗(τ) ≈ HBethe(τ) :=
∑

s∈V

Hs(τs) −
∑

(s,t)∈E

Ist(τst). (4.14)

An important fact, central in the derivation of the sum-product algo-
rithm, is that this approximation (4.14) can be evaluated for any set of
pseudomarginals {τs,s ∈ V } and {τst,(s, t) ∈ E} that belong to L(G).
For this reason, our change in notation — from µ for exact marginals
to τ for pseudomarginals — is deliberate.

Bethe Variational Problem (BVP)
l  Combining these two ingredient leads to the Bethe variational

problem (BVP):

l  A simple structured problem (differentiable & constraint set is a simple
convex polytope)

l  Loopy BP can be derived as am iterative method for solving a
Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for
tree graphs

22

4.1 Sum-Product and Bethe Approximation 83

We note in passing that Yedidia et al. [268, 269] used an alternative
form of the Bethe entropy approximation (4.14), one which can be
obtained via the relation Ist(τst) = Hs(τs) + Ht(τt) − Hst(τst), where
Hst is the joint entropy defined by the pseudomarginal τst. Doing so
and performing some algebraic manipulation yields

HBethe(τ) = −
∑

s∈V

(ds − 1)Hs(τs) +
∑

(s,t)∈E

Hst(τst), (4.15)

where ds corresponds to the number of neighbors of node s (i.e., the
degree of node s). However, the symmetric form (4.14) turns out to be
most natural for our development in the sequel.

4.1.3 Bethe Variational Problem and Sum-Product

We now have the two ingredients needed to construct the Bethe approx-
imation to the exact variational principle (3.45) from Theorem 3.4:

• the set L(G) of locally consistent pseudomarginals (4.7) is a
convex (polyhedral) outer bound on the marginal polytope
M(G); and

• the Bethe entropy (4.14) is an approximation of the exact
dual function A∗(τ).

By combining these two ingredients, we obtain the Bethe variational
problem (BVP):

max
τ∈L(G)

{
〈θ, τ〉 +

∑

s∈V

Hs(τs) −
∑

(s,t)∈E

Ist(τst)
}

. (4.16)

Note that this problem has a very simple structure: the cost function
is given in closed form, it is differentiable, and the constraint set L(G)
is a polytope specified by a small number of constraints. Given this
special structure, one might suspect that there should exist a relatively
simple algorithm for solving this optimization problem (4.16). Indeed,
the sum-product algorithm turns out to be exactly such a method.

In order to develop this connection between the variational pro-
blem (4.16) and the sum-product algorithm, let λss be a Lagrange

Geometry of BP
l  Consider the following assignment of pseudo-marginals

l  Can easily verify

l  However, (need a bit more work)

l  Tree-based outer bound
l  For any graph,

l  Equality holds if and only if the graph is a tree

l  Question: does solution to the BVP ever fall
into the gap?
l  Yes, for any element of outer bound , it is

possible to construct a distribution with it as a
BP fixed point (Wainwright et. al. 2003)

23

Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τs, τst:

Locally consistent

(pseudo)marginals

3

2

1

• can verify that τ ∈ LOCAL(G), and that τ is a fixed point of belief

propagation (with all constant messages)

• however, τ is globally inconsistent

Note: More generally: for any τ in the interior of LOCAL(G), can

construct a distribution with τ as a BP fixed point.

53

τ ∈ L(G)

90 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

L(G) ⊆ M(G)

L(G)

τ �∈ M(G)

Inexactness of Bethe Entropy Approximation

l  Consider a fully connected graph with

l  It is globally valid: ; realized by the distribution that places
mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

l 

l 

24

32

1 4

4.1 Sum-Product and Bethe Approximation 89

We begin by considering the Bethe entropy approximation, and its
potential inexactness:

Example 4.2 (Inexactness of HBethe). Consider the fully
connected graph K4 on four vertices, and the collection of singleton
and pairwise marginal distributions given by

µs(xs) =
[
0.5 0.5

]
for s = 1,2,3,4 (4.26a)

µst(xs,xt) =
[
0.5 0
0 0.5

]
∀ (s, t) ∈ E. (4.26b)

It can be verified that these marginals are globally valid, generated
in particular by the distribution that places mass 0.5 on each of the
configurations (0, 0, 0, 0) and (1, 1, 1, 1). Let us calculate the Bethe
entropy approximation. Each of the four singleton entropies are given
by Hs(µs) = log2, and each of the six (one for each edge) mutual infor-
mation terms are given by Ist(µst) = log2, so that the Bethe entropy
is given by

HBethe(µ) = 4log2 − 6log2 = −2log2 < 0,

which cannot be a true entropy. In fact, for this example, the
true entropy (or value of the negative dual function) is given by
−A∗(µ) = log2 > 0.

In addition to the inexactness of HBethe as an approximation to the
negative dual function, the Bethe variational principle also involves
relaxing the marginal polytope M(G) to the first-order constraint set
L(G). As illustrated in Example 4.1, the inclusion M(C3) ⊆ L(C3) holds
strictly for the 3-node cycle C3. The constructive procedure of Exam-
ple 4.1 can be substantially generalized to show that the inclusion
M(G) ⊂ L(G) holds strictly for any graph G with cycles. Figure 4.2
provides a highly idealized illustration3 of the relation between M(G)
and L(G): both sets are polytopes, and for a graph with cycles, M(G)
is always strictly contained within the outer bound L(G).

3 In particular, this picture is misleading in that it suggests that L(G) has more facets and
more vertices than M(G); in fact, the polytope L(G) has fewer facets and more vertices,
but this is difficult to convey in a 2D representation.

τ ∈ M(G)

4.1 Sum-Product and Bethe Approximation 89

We begin by considering the Bethe entropy approximation, and its
potential inexactness:

Example 4.2 (Inexactness of HBethe). Consider the fully
connected graph K4 on four vertices, and the collection of singleton
and pairwise marginal distributions given by

µs(xs) =
[
0.5 0.5

]
for s = 1,2,3,4 (4.26a)

µst(xs,xt) =
[
0.5 0
0 0.5

]
∀ (s, t) ∈ E. (4.26b)

It can be verified that these marginals are globally valid, generated
in particular by the distribution that places mass 0.5 on each of the
configurations (0, 0, 0, 0) and (1, 1, 1, 1). Let us calculate the Bethe
entropy approximation. Each of the four singleton entropies are given
by Hs(µs) = log2, and each of the six (one for each edge) mutual infor-
mation terms are given by Ist(µst) = log2, so that the Bethe entropy
is given by

HBethe(µ) = 4log2 − 6log2 = −2log2 < 0,

which cannot be a true entropy. In fact, for this example, the
true entropy (or value of the negative dual function) is given by
−A∗(µ) = log2 > 0.

In addition to the inexactness of HBethe as an approximation to the
negative dual function, the Bethe variational principle also involves
relaxing the marginal polytope M(G) to the first-order constraint set
L(G). As illustrated in Example 4.1, the inclusion M(C3) ⊆ L(C3) holds
strictly for the 3-node cycle C3. The constructive procedure of Exam-
ple 4.1 can be substantially generalized to show that the inclusion
M(G) ⊂ L(G) holds strictly for any graph G with cycles. Figure 4.2
provides a highly idealized illustration3 of the relation between M(G)
and L(G): both sets are polytopes, and for a graph with cycles, M(G)
is always strictly contained within the outer bound L(G).

3 In particular, this picture is misleading in that it suggests that L(G) has more facets and
more vertices than M(G); in fact, the polytope L(G) has fewer facets and more vertices,
but this is difficult to convey in a 2D representation.

4.1 Sum-Product and Bethe Approximation 89

We begin by considering the Bethe entropy approximation, and its
potential inexactness:

Example 4.2 (Inexactness of HBethe). Consider the fully
connected graph K4 on four vertices, and the collection of singleton
and pairwise marginal distributions given by

µs(xs) =
[
0.5 0.5

]
for s = 1,2,3,4 (4.26a)

µst(xs,xt) =
[
0.5 0
0 0.5

]
∀ (s, t) ∈ E. (4.26b)

It can be verified that these marginals are globally valid, generated
in particular by the distribution that places mass 0.5 on each of the
configurations (0, 0, 0, 0) and (1, 1, 1, 1). Let us calculate the Bethe
entropy approximation. Each of the four singleton entropies are given
by Hs(µs) = log2, and each of the six (one for each edge) mutual infor-
mation terms are given by Ist(µst) = log2, so that the Bethe entropy
is given by

HBethe(µ) = 4log2 − 6log2 = −2log2 < 0,

which cannot be a true entropy. In fact, for this example, the
true entropy (or value of the negative dual function) is given by
−A∗(µ) = log2 > 0.

In addition to the inexactness of HBethe as an approximation to the
negative dual function, the Bethe variational principle also involves
relaxing the marginal polytope M(G) to the first-order constraint set
L(G). As illustrated in Example 4.1, the inclusion M(C3) ⊆ L(C3) holds
strictly for the 3-node cycle C3. The constructive procedure of Exam-
ple 4.1 can be substantially generalized to show that the inclusion
M(G) ⊂ L(G) holds strictly for any graph G with cycles. Figure 4.2
provides a highly idealized illustration3 of the relation between M(G)
and L(G): both sets are polytopes, and for a graph with cycles, M(G)
is always strictly contained within the outer bound L(G).

3 In particular, this picture is misleading in that it suggests that L(G) has more facets and
more vertices than M(G); in fact, the polytope L(G) has fewer facets and more vertices,
but this is difficult to convey in a 2D representation.

25

Discussions
l  This connection provides a principled basis for applying the

sum-product algorithm for loopy graphs

l  However,
l  Although there is always a fixed point of loopy BP, there is no

guarantees on the convergence of the algorithm on loopy graphs
l  The Bethe variational problem is usually non-convex. Therefore, there

are no guarantees on the global optimum
l  Generally, no guarantees that is a lower bound of

l  Nevertheless,
l  The connection and understanding suggest a number of avenues for

improving upon the ordinary sum-product algorithm, via progressively
better approximations to the entropy function and outer bounds on the
marginal polytope (Kikuchi clustering)

88 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

tree-structured problem, we have the equality ABethe(θ) = A(θ) for
all θ ∈ Rd. Given this equivalence, it is natural to consider the rela-
tion between ABethe(θ) and the cumulant function A(θ) for general
graphs. In general, the Bethe value ABethe(θ) is simply an approxi-
mation to the cumulant function value A(θ). Unlike the mean field
methods to be discussed in Section 5, it is not guaranteed to pro-
vide a lower bound on the cumulant function. As will be discussed
at more length in Section 7, Wainwright et al. [246] derived “con-
vexified” forms of the Bethe variational principle that are guaranteed
to yield upper bounds on the cumulant function for any graphical
model. On the other hand, Sudderth et al. [224] show that ABethe(θ)
is a lower bound on the cumulant function A(θ) for certain classes
of attractive graphical models. Such models, in which the interactions
encourage random variables to agree with one another, are common
in computer vision and other applications in spatial statistics. This
lower-bounding property is closely related to the connection between
the Bethe approximation and loop series expansions [51], discussed in
Section 4.1.6.

Another important consequence of the Bethe/sum-product connec-
tion is in suggesting a number of avenues for improving upon the
ordinary sum-product algorithm, via progressively better approxima-
tions to the entropy function and outer bounds on the marginal poly-
tope. We turn to discussion of a class of such generalized sum-product
algorithms beginning in Section 4.2.

4.1.4 Inexactness of Bethe and Sum-Product

In this section, we explore some aspects of the inexactness of the
sum-product algorithm. From a variational perspective, the inexact-
ness stems from the two approximations made in setting up Bethe
variational principle:

(a) Replacing the marginal polytope M(G) by the polyhedral
outer bound L(G) and

(b) The Bethe entropy HBethe as an approximation to the exact
entropy as a function of the mean parameters.

88 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

tree-structured problem, we have the equality ABethe(θ) = A(θ) for
all θ ∈ Rd. Given this equivalence, it is natural to consider the rela-
tion between ABethe(θ) and the cumulant function A(θ) for general
graphs. In general, the Bethe value ABethe(θ) is simply an approxi-
mation to the cumulant function value A(θ). Unlike the mean field
methods to be discussed in Section 5, it is not guaranteed to pro-
vide a lower bound on the cumulant function. As will be discussed
at more length in Section 7, Wainwright et al. [246] derived “con-
vexified” forms of the Bethe variational principle that are guaranteed
to yield upper bounds on the cumulant function for any graphical
model. On the other hand, Sudderth et al. [224] show that ABethe(θ)
is a lower bound on the cumulant function A(θ) for certain classes
of attractive graphical models. Such models, in which the interactions
encourage random variables to agree with one another, are common
in computer vision and other applications in spatial statistics. This
lower-bounding property is closely related to the connection between
the Bethe approximation and loop series expansions [51], discussed in
Section 4.1.6.

Another important consequence of the Bethe/sum-product connec-
tion is in suggesting a number of avenues for improving upon the
ordinary sum-product algorithm, via progressively better approxima-
tions to the entropy function and outer bounds on the marginal poly-
tope. We turn to discussion of a class of such generalized sum-product
algorithms beginning in Section 4.2.

4.1.4 Inexactness of Bethe and Sum-Product

In this section, we explore some aspects of the inexactness of the
sum-product algorithm. From a variational perspective, the inexact-
ness stems from the two approximations made in setting up Bethe
variational principle:

(a) Replacing the marginal polytope M(G) by the polyhedral
outer bound L(G) and

(b) The Bethe entropy HBethe as an approximation to the exact
entropy as a function of the mean parameters.

Summary
l  Variational methods in general turn inference into an optimization

problem via exponential families and convex duality

l  The exact variational principle is intractable to solve; there are two
distinct components for approximations:
l  Either inner or outer bound to the marginal polytope
l  Various approximation to the entropy function

l  Mean field: non-convex inner bound and exact form of entropy
l  BP: polyhedral outer bound and non-convex Bethe approximation
l  Kikuchi and variants: tighter polyhedral outer bounds and better

entropy approximations (Yedidia et. al. 2002)

26

Summary
l  “Off-the-Shelf” solution to inference problem?

l  Mean field: yields lower bound on the log partition function (likelihood
function); widely used as an approximate E-step in EM algorithm

l  Sum-product: works well if the graph is locally tree-like and typically
performs better than mean field; successfully used in error-correcting
coding and low-level vision community

27

