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What have we learned so far °

£

e Free energy based approaches

e Direct approximation of Gibbs free energy: Bethe free energy and loop
BP

e Restricting the family of approximation distribution: mean field method

e Convex duality based approaches

1. Exponential Families
2. Indicator Sufficient Statistics
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Inf Computing Mean Variational
nierence Parameters Principle

Convex Duality




Computing Mean Parameter: Bernoulli °

e A single Bernoulli random variable @ 0
p(x;0) = exp{0z — A(8)},z € {0,1}, A(9) = log(1 + ¢*)

e Inference = Computing the mean parameter
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- 1+ e?

u(0) = Eo| X| = p(X =1;0)

e Want to do it in a variational manner: cast the procedure of
computing mean (summation) in an optimization-based
formulation



Conjugate Dual Function :

-

e Given any function f(#), its conjugate dual function is:

() = Sgp{<9,u> — f(0)}

f(6)

v/// /,// .(07 _f*(lu))
e Conjugate dual is always a convex function: pointwise
supremum of a class of linear functions



Dual of the Dual is the Original :

e Under some technical condition on f (convex and lower semi-
continuous), the dual of dual is itself:

f=(f)
£(0) = sup {(6, 1) — £ (1)}

L

e For log partition function

A(0) = sgbp{w,m —A* (W)}, 0eQ

e The dual variable [l has a natural interpretation as mean parameters
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Computing Mean Parameter: Bernoulli
e The conjugate A*(u) := sup {ud — log[l + exp(6)]}
60cR
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e Stationary condition U 1+ ef (,LL ( ))
o I 1€ (0.1),00n) =log () A"(0) = pog(u) + (1~ ) o1~

o If & [0,1], A" () = +o¢

plogp + (1 — p)log(l — ) if p € [0, 1]

+0o0 otherwise.

e We have A*(u) = {

e The variational form: A(8) = max,, «[o,1] {M -0 — A*(M)}-
0
(&

1+e? -

e The optimum is achieved at p(8) = This is the mean!



Remark o°

e The last few identities are not coincidental but rely on a deep
theory in general exponential family

e The dual function is the negative entropy function
e The mean parameter is restricted
e Solving the optimization returns the mean parameter

e Next step: develop this framework for general exponential
families/graphical models



Computation of Conjugate Dual &

e Given an exponential family

d
p(T1,. .., Tm;0) = exp {Z 0ipi(x) — A(@)}

e The dual function

A" (p) = sup {{u, 0) — A(0)}

e The stationary condition: ©u—VA@#) = 0

e Derivatives of A yields mean parameters

0A
25 0) =Ealo(0] = [ 6,0

e The stationary condition becomes = Eg[p(X)]

e Question: for which 1 € R? does it have a solution 6(y) ?



Computation of Conjugate Dual &

o Let's assume there is a solution #(:) such that 1 = Eg(,) [¢(X)]

e The dual has the form

A% (p) = (O(p), 1) — A(B(w))
= Ep(u) [(0(n), o(X)) — A(O(p)]
— EQ(M) [logp(Xae( )]

e The entropy is defined as

H(p(z)) = — / p(z)log p(x) dx

e Sothe dualis A*(n) = —H(p(z;0(1)) when there is a solution 0(u)

e Question: for which i € R does it have a solution (1)?



Marginal Polytope o

e For any distribution p(z) and a set of sufficient statistics ,
define a vector of mean parameters

i = Byl6:(00] = [ 6u()p(a) do
e p(x) is not necessarily an exponential family

e The set of all realizable mean parameters
M:={pecR|Ips.t. E[p(X)]=pl}.

e Itis aconvex set

e For discrete exponential families, this is called marginal
polytope
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Convex Polytope :

e Convex hull representation

M = {;.'. e R Z o(x)p(x) = p, for some p(x) > 0, Z plr) = 1}

a ,:'_: (]_f m i'E ‘1-" e

= mm-'{qi}(.r}. rE ;1’“”}

e Half-plane representation

e Minkowski-Weyl Theorem: any non-empty convex polytope can be
characterized by a finite collection of linear inequality constraints

M = {,u. = Rdh‘m;r,u. > by, Vi€ J}q
J| is finite. \aj

where

<aj7 :u> = bj
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Example: Ising Model :

e Sufficient statistics: ¢(z) := (5,5 € V; zemy, (5,t) € E) € RIVIFIEL

ps = Ep[Xs] =P[Xs=1] forall seV, and

e Mean parameters: pet = B [X, X)) = P[(X,, X;) = (1,1)] for all (s,¢) € E.

e Two-node Ising model : :

e Convex hull representation
conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

e Half-plane representation

H12

H1 o = 12
2 = 12
piz2 = 0
L+pie = p1+ p2

e EXercise: three-node Ising model
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Example: Discrete MRF 4+

I(xs) fors=1,...n, j€& X,
Ljr(zs, ) for(s,t) € B, (j, k) € Xs X &

e Sufficient statistics:

e Mean parameters are marginal probabilities:
sy = Bp[l(Xo)] = P[X, =j] Vj€ A,
pstsik = Ep|Lsein(Xs, Xo)| =PI Xs =5, Xy = k] V(j, k) € X5 € X
e Marginal Polytope
M(G) = {p € R | Ip with marginals jis.;, thst: ik

e For tree graphical models, the number of half-planes (facet
complexity) grows only linearly in the graph size

e For general graphs, it is extremely difficult to characterize the
marginal polytope
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Variational Principle (Theorem 3.4) o

e [he dual function takes the form

A*( ) _ _H<p9(l~b)) if [IRS M?°
: +00 if ¢ M.

o O(p) satisfies pt = Egy) o (X))
e The log partition function has the variational form
A(0) = sup {0 n — A* (1)}
peM

e Forall 0 € Q2, the above optimization problem is attained
uniquely at u(6) € M° that satisfies

pu(0) = Eolo(X)]
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Example: Two-node Ising Model

X1 X
e The distribution p(z;0) o< exp{fi21 + 0222 + 012712} < > < >

1
e The marginal polytope is characterized by 19
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H12
0

M1+ 2

12
1+ p2

AVAR AVAR AVARAV/

e The dual has an explicit form
A*(p) = pizlog pig + (1 — pa2) log(py — pi2) + (p2 — p12) log(pe — pi2)

+(1 + p12 — p1 — p2)log(l + p12 — pr — p2)

H1,M2,412

e The optimum is attained at

(0) - exp{61} + exp{f1 + 0> + 012}
H1 1 + exp{01} + exp{O2} + exp{01 + 02 + 012}
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Challenges :

e In general graphical models, the marginal polytope can be
very difficult to characterize explicitly

e The dual function is implicitly defined:

0(1)
poo—= (VA - —H(pon)) [ A*(1)

e |nverse mapping is nontrivial

e Evaluating the entropy requires high-dimensional integration
(summation)
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Variational Inference °

e Variational formulation

A(9) = sup {07 — A" (1)}

e General idea of variational inference for graphical models:

e Approximate the function to be optimized, i.e., the entropy term (Bethe-
Kikuchi, sum-product)

e Restrict the set over which the optimization takes place to a subset, i.e.,
the marginal polytope (mean field methods)
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