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What have we learned so far 
l  Free energy based approaches 

l  Direct approximation of Gibbs free energy: Bethe free energy and loop 
BP 

l  Restricting the family of approximation distribution: mean field method 

l  Convex duality based approaches 
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Computing Mean 
Parameters Inference Variational 

Principle 

1. Exponential Families 
2. Indicator Sufficient Statistics Convex Duality 



Computing Mean Parameter: Bernoulli  

l  A single Bernoulli random variable 

l  Inference = Computing the mean parameter 

l  Want to do it in a variational manner: cast the procedure of 
computing mean (summation) in an optimization-based 
formulation 
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p(x; θ) = exp{θx−A(θ)}, x ∈ {0, 1}, A(θ) = log(1 + eθ)

X θ

µ(θ) = Eθ[X] = p(X = 1; θ) =
eθ

1 + eθ



l  Given any function          , its conjugate dual function is: 
 

l  Conjugate dual is always a convex function: pointwise 
supremum of a class of linear functions 

 

The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5

Convex functions 3–21

θ
θµ

θ

µ

Conjugate Dual Function 
f(θ)

f∗(µ) = sup
θ

{�θ, µ� − f(θ)}
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Dual of the Dual is the Original 
l  Under some technical condition on     (convex and lower semi-

continuous), the dual of dual is itself:  

l  For log partition function 

l  The dual variable      has a natural interpretation as mean parameters  
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f

f(θ) = sup
µ

{�θ, µ� − f∗(µ)}

f = (f∗)∗

A(θ) = sup
µ
{�θ, µ� −A∗(µ)}, θ ∈ Ω

µ



Computing Mean Parameter: Bernoulli  

l  The conjugate 

l  Stationary condition 
 
l  If  

l  If  
 
l  We have 

l  The variational form: 

l  The optimum is achieved at                . This is the mean!   

Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
˘

θ x
¯

with A(θ) = log
ˆ

1 + exp(θ)
˜

.

Let’s compute the dual A∗(µ) := sup
θ∈R

˘

µθ − log[1 + exp(θ)]
¯

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

PSfrag replacements

A(θ)

θ

〈µ, θ〉 − A∗(µ)

PSfrag replacements

A(θ)

θ
〈µ, θ〉 − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

8

<

:

µ log µ + (1 − µ) log(1 − µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

˘

µ · θ − A∗(µ)
¯

.
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25

µ =
eθ

1 + eθ
(µ = ∇A(θ))

µ ∈ (0, 1), θ(µ) = log

�
µ

1− µ

�
, A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

µ �∈ [0, 1], A∗(µ) = +∞

µ(θ) =
eθ

1 + eθ
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Remark 
l  The last few identities are not coincidental but rely on a deep 

theory in general exponential family 
l  The dual function is the negative entropy function 
l  The mean parameter is restricted 
l  Solving the optimization returns the mean parameter 

l  Next step: develop this framework for general exponential 
families/graphical models 
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Computation of Conjugate Dual 
l  Given an exponential family 

l  The dual function 

l  The stationary condition: 

l  Derivatives of A yields mean parameters 

l  The stationary condition becomes  

l  Question: for which   does it have a solution        ?  
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p(x1, . . . , xm; θ) = exp

�
d�

i=1

θiφi(x)−A(θ)

�

66 Graphical Models as Exponential Families

between A and the maximum entropy principle is specified precisely in
terms of the conjugate dual function A∗, to which we now turn.

3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy

Conjugate duality is a cornerstone of convex analysis [112, 203], and
is a natural source for variational representations. In this section, we
explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{〈µ, θ〉 − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1

n

∑n
i=1 φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the

More general computation of the dual A∗

• consider the definition of the dual function:

A∗(µ) = sup
θ∈Rd

{
〈µ, θ〉 − A(θ)

}
.

• taking derivatives w.r.t θ to find a stationary point yields:

µ −∇A(θ) = 0.

• Useful fact: Derivatives of A yield mean parameters:

∂A

∂θα
(θ) = Eθ[φα(x)] :=

∫
φα(x)p(x; θ)ν(x).

Thus, stationary points satisfy the equation:

µ = Eθ[φ(x)] (1)

26

θ(µ)µ ∈ Rd

∂A

∂θi
(θ) = Eθ[φi(X)] =

�
φi(x)p(x; θ) dx

µ = Eθ[φ(X)]



Computation of Conjugate Dual 
l  Let’s assume there is a solution         such that  

l  The dual has the form 

l  The entropy is defined as   

l  So the dual is     when there is a solution
   

l  Question: for which   does it have a solution        ?   
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θ(µ) µ = Eθ(u)[φ(X)]
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µ1 ≥ u12

µ2 ≥ u12

u12 ≥ 0

1 + µ12 ≥ u1 + u2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

1

H(p(x)) = −
�

p(x) log p(x) dx

µ ∈ Rd θ(µ)
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µ1 ≥ u12

µ2 ≥ u12

u12 ≥ 0

1 + µ12 ≥ u1 + u2

M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

1

θ(µ)



Marginal Polytope 
l  For any distribution        and a set of sufficient statistics          , 

define a vector of mean parameters  

l         is not necessarily an exponential family 

l  The set of all realizable mean parameters 

l  It is a convex set 

l  For discrete exponential families, this is called marginal 
polytope 
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3.5 Properties of A 63

=
∫

X m
φα(x)

exp〈θ, φ(x)〉ν(dx)∫
X m exp〈θ, φ(u)〉ν(du)

= Eθ[φα(X)],

which establishes Equation (3.41a). The formula for the higher-order
derivatives can be proven in an entirely analogous manner.

Observe from Equation (3.41b) that the second-order partial deriva-
tive ∂2A

∂θαθβ
2 is equal to the covariance element cov{φα(X),φβ(X)}.

Therefore, the full Hessian ∇2A(θ) is the covariance matrix of the
random vector φ(X), and so is positive semidefinite on the open set
Ω, which ensures convexity (see Theorem 4.3.1 of Hiriart-Urruty and
Lemaréchal [112]). If the representation is minimal, there is no nonzero
vector a ∈ Rd and constant b ∈ R such that 〈a, φ(x)〉 = b holds ν-a.e.
This condition implies varθ[〈a, φ(x)〉] = aT ∇2A(θ)a > 0 for all a ∈ Rd

and θ ∈ Ω; this strict positive definiteness of the Hessian on the open
set Ω implies strict convexity [112].

3.5.2 Forward Mapping to Mean Parameters

We now turn to an in-depth consideration of the forward mapping
θ %→ µ, from the canonical parameters θ ∈ Ω defining a distribution pθ

to its associated vector of mean parameters µ ∈ Rd. Note that the gradi-
ent ∇A can be viewed as mapping from Ω to Rd. Indeed, Proposition 3.1
demonstrates that the range of this mapping is contained within the
set M of realizable mean parameters, defined previously as

M := {µ ∈ Rd | ∃ p s.t. Ep[φ(X)] = µ}.

We will see that a great deal hinges on the answers to the following
two questions:

(a) when does ∇A define a one-to-one mapping?
(b) when does the image of Ω under the mapping ∇A — that

is, the set ∇A(Ω) — fully cover the set M?

The answer to the first question is relatively straightforward, essen-
tially depending on whether or not the exponential family is minimal.
The second question is somewhat more delicate: to begin, note that our

µi = Ep[φi(X)] =

�
φi(x)p(x) dx

p(x)

p(x)



Convex Polytope 
l  Convex hull representation 

 

l  Half-plane representation 
l  Minkowski-Weyl Theorem: any non-empty convex polytope can be 

characterized by a finite collection of linear inequality constraints 
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3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].



Example: Ising Model 
l  Sufficient statistics: 

l  Mean parameters: 

l  Two-node Ising model 
l  Convex hull representation 

l  Half-plane representation 

l  Exercise: three-node Ising model  
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56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1

−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0

−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.
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of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1

−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0

−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.
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Example: Discrete MRF 

l  Sufficient statistics: 

l  Mean parameters are marginal probabilities: 

 

l  Marginal Polytope  

 
l  For tree graphical models, the number of half-planes (facet 

complexity) grows only linearly in the graph size 

l  For general graphs, it is extremely difficult to characterize the 
marginal polytope  
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Examples of M: Discrete MRF

• sufficient statistics:
I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for(s, t) ∈ E, (j, k) ∈ Xs × Xt

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

PSfrag replacements aj

MARG(G)

〈aj , µ〉 = bj

µe • denote the set of realizable µs and µst

by MARG(G)

• refer to it as the marginal polytope

• extremely difficult to characterize for

general graphs

30

3.4 Mean Parameterization and Inference Problems 59

We refer to the sufficient statistics (3.34) as the standard overcom-
plete representation. Its overcompleteness was discussed previously in
Example 3.2.

With this choice of sufficient statistics, the mean parameters take a
very intuitive form: in particular, for each node s ∈ V

µs;j = Ep[I j(Xs)] = P[Xs = j] ∀j ∈ Xs, (3.35)

and for each edge (s, t) ∈ E, we have

µst;jk = Ep[I st;jk(Xs,Xt)] = P[Xs = j,Xt = k] ∀(j,k) ∈ Xs ∈ Xt.
(3.36)

Thus, the mean parameters correspond to singleton marginal distribu-
tions µs and pairwise marginal distributions µst associated with the
nodes and edges of the graph. In this case, we refer to the set M as the
marginal polytope associated with the graph, and denote it by M(G).
Explicitly, it is given by

M(G) := {µ ∈ Rd | ∃p such that (3.35) holds ∀(s;j), and

(3.36) holds ∀(st;jk
}
. (3.37)

Note that the correlation polytope for the Ising model presented
in Example 3.8 is a special case of a marginal polytope, obtained
for Xs ∈ {0,1} for all nodes s. The only difference is we have defined
marginal polytopes with respect to the standard overcomplete basis of
indicator functions, whereas the Ising model is usually parameterized as
a minimal exponential family. The codeword polytope of Example 3.9 is
another special case of a marginal polytope. In this case, the reduction
requires two steps: first, we convert the factor graph representation of
the code — for instance, as shown in Figure 3.7(a) — to an equiva-
lent pairwise Markov random field, involving binary variables at each
bit node, and higher-order discrete variables at each factor node. (See
Appendix E.3 for details of this procedure for converting from factor
graphs to pairwise MRFs.) The marginal polytope associated with this
pairwise MRF is simply a lifted version of the codeword polytope. We
discuss these and other examples of marginal polytopes in more detail
in later sections.
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M(G) = {µ ∈ Rd | ∃p with marginals µs;j , µst;jk}

A
∗(µ) = �θ(µ), µ� −A(θ(µ))

= Eθ(µ) [�θ(µ),φ(X)� −A(θ(µ)]

= Eθ(µ) [log p(X; θ(µ)]

A
∗(µ) = −H(p(x; θ(µ))

1



Variational Principle (Theorem 3.4) 

l  The dual function takes the form 

l          satisfies  

l  The log partition function has the variational form 

l  For all          , the above optimization problem is attained 
uniquely at          that satisfies 
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θ(µ) µ = Eθ(u)[φ(X)]

θ ∈ Ω

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 67

extended real line R∗ = R ∪ {+∞}, as is standard in convex analysis
(see Appendix A.2.5 for more details).

As we have previously intimated, the conjugate dual function (3.42)
is very closely connected to entropy. Recall the definition (3.2) of the
Shannon entropy. The main result of the following theorem is that when
µ ∈ M◦, the value of the dual function A∗(µ) is precisely the negative
entropy of the exponential family distribution pθ(µ), where θ(µ) is the
unique vector of canonical parameters satisfying the relation

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ. (3.43)

We will also find it essential to consider µ /∈ M◦, in which case it is
impossible to find canonical parameters satisfying the relation (3.43). In
this case, the behavior of the supremum defining A∗(µ) requires a more
delicate analysis. In fact, denoting by M the closure of M, it turns out
that whenever µ /∈ M, then A∗(µ) = +∞. This fact is essential in the
use of variational methods: it guarantees that any optimization problem
involving the dual function can be reduced to an optimization problem
over M. Accordingly, a great deal of our discussion in the sequel will be
on the structure of M for various graphical models, and various approx-
imations to M for models in which its structure is overly complex.

More formally, the following theorem, proved in Appendix B.2, provides
a precise characterization of the relation between A and its conjugate
dual A∗:

Theorem 3.4.

(a) For any µ ∈ M◦, denote by θ(µ) the unique canonical
parameter satisfying the dual matching condition (3.43).
The conjugate dual function A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ /∈ M.
(3.44)

For any boundary point µ ∈ M\M◦ we have
A∗(µ) = lim

n→+∞
A∗(µn) taken over any sequence {µn} ⊂ M◦

converging to µ.

A(θ) = sup
µ∈M

{θTµ−A∗(µ)}

µ(θ) ∈ Mo

µ(θ) = Eθ[φ(X)]



Example: Two-node Ising Model 
l  The distribution 

l  The marginal polytope is characterized by 
 
l  The dual has an explicit form 

l  The variational problem 

l  The optimum is attained at    
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X1 X2
p(x; θ) ∝ exp{θ1x1 + θ2x2 + θ12x12}

A∗(µ) = µ12 logµ12 + (µ1 − µ12) log(µ1 − µ12) + (µ2 − µ12) log(µ2 − µ12)

+(1 + µ12 − µ1 − µ2) log(1 + µ12 − µ1 − µ2)

A(θ) = max
{µ1,µ2,µ12}∈M

{θ1µ1 + θ2µ2 + θ12µ12 −A∗(µ)}

µ1(θ) =
exp{θ1}+ exp{θ1 + θ2 + θ12}

1 + exp{θ1}+ exp{θ2}+ exp{θ1 + θ2 + θ12}
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Challenges 

l  In general graphical models, the marginal polytope can be 
very difficult to characterize explicitly 

l  The dual function is implicitly defined: 

l  Inverse mapping is nontrivial 
l  Evaluating the entropy requires high-dimensional integration 

(summation) 
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74 Graphical Models as Exponential Families

Fig. 3.9 A block diagram decomposition of A∗ as the composition of two functions. Any
mean parameter µ ∈ M◦ is first mapped back to a canonical parameter θ(µ) in the inverse
image (∇A)−1(µ). The value of A∗(µ) corresponds to the negative entropy −H(pθ(µ)) of
the associated exponential family density pθ(µ).

rapidly with the graph size. Indeed, unless fundamental conjectures in
complexity theory turn out to be false, it is not even possible to opti-
mize a linear function over M for a general discrete MRF. In addition
to the complexity of the constraint set, issue (b) highlights that even
evaluating the cost function at a single point µ ∈ M, let alone optimiz-
ing it over M, is extremely difficult.

To understand the complexity inherent in evaluating the dual value
A∗(µ), note that Theorem 3.4 provides only an implicit characteri-
zation of A∗ as the composition of mappings: first, the inverse map-
ping (∇A)−1 : M◦ → Ω, in which µ maps to θ(µ), corresponding to the
exponential family member with mean parameters µ; and second, the
mapping from θ(µ) to the negative entropy −H(pθ(µ)) of the associ-
ated exponential family density. This decomposition of the value A∗(µ)
is illustrated in Figure 3.9. Consequently, computing the dual value
A∗(µ) at some point µ ∈ M◦ requires computing the inverse map-
ping (∇A)−1(µ), in itself a nontrivial problem, and then evaluating
the entropy, which requires high-dimensional integration for general
graphical models. These difficulties motivate the use of approximations
to M and A∗. Indeed, as shown in the sections to follow, a broad class
of methods for approximate marginalization are based on this strategy
of finding an approximation to the exact variational principle, which is
then often solved using some form of message-passing algorithm.



Variational Inference 
l  Variational formulation 

l  General idea of variational inference for graphical models: 
l  Approximate the function to be optimized, i.e., the entropy term (Bethe-

Kikuchi, sum-product) 

l  Restrict the set over which the optimization takes place to a subset, i.e., 
the marginal polytope (mean field methods) 
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A(θ) = sup
µ∈M

{θTµ−A∗(µ)}


