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Recap 

  Loopy belief propagation (sum-product) algorithm is a method 
to find the stationary point of Bethe free energy 
  based on direct approximation of Gibbs free energy 
  will revisit BP and Bethe approximation from another point of view later 

  Today, we will look at another approximation inference 
method based on restricting the family of approximation 
distribution 
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Variational Methods 

  “Variational”: fancy name for optimization-based formulations 
  i.e., represent the quantity of interest as the solution to an optimization 

problem 
  approximate the desired solution by relaxing/approximating the 

intractable optimization problem 

  Examples: 
  Courant-Fischer for eigenvalues: 

    

  Linear system of equations: 
  variational formulation: 

 

  for large system, apply conjugate gradient method  
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Inference Problems in Graphical Models 

  Undirected graphical model (MRF): 

  The quantities of interest: 

  marginal distributions:  

  normalization constant (partition function):  

  Question: how to represent these quantities in a variational 
form? 
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                           is a complicated function of true marginals and 
hard to compute 

  Idea: construct a           such that it has a nice functional form 
of beliefs (approximate marginals) and easy to optimize 

  approach 1: directly approximate with               , e.g. Bethe approximation 

  approach 2: restrict       in a tractable class of distributions 

Variational Formulation 

F(P,P) = ! logZ

KL(Q || P) = !HQ (X)! EQ log!C (xC )
C
" + logZ

F(P,Q) Gibbs Free Energy 

F(P,Q)

F
!

(P,Q)

Q

F (P,Q) ⇡ F̂ (P,Q) = GBethe({qi(xi)}, {qij(xi, xj)})



 

  Restrict Q for which HQ is feasible to compute 
  exact objective to minimize 
  tightened feasible set 
  yields a lower bound on the log partition function log Z 

  Q is a “simple” parameterized approximating distribution 
  free parameters to tune are called variational parameters 

Mean Field Methods 
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Naïve Mean Field 

  Completely factorized variational distribution 
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Naïve Mean Field Free Energy 

  Consider a pairwise Markov random field 

  Naïve mean field free energy 

  Use coordinate descent to optimize with respect to q 
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  Ising model in {0,1} representation 

 

  The true marginals are the mean parameters 
 

  The naïve mean field update equations 

 

                                            is the variational mean parameter at node i 
  the variational mean parameters are coupled among neighbors 

qi := qi(xi = 1) = Eq[xi]

Naïve Mean Field for Ising Model 
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Derivation 

  Setting to zero gives us 

  That is the mean field equation 
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  Mean field theory is general to any tractable sub-graphs 
  Naïve mean field is based on the fully unconnected sub-graph 
  Variants based on structured sub-graphs can be derived, such 

as trees, chains, and etc. 

Structured Mean Field 
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Factorial HMM (Ghahramani & Jordan 97’) 

  Can be used to model multiple independent latent processes 
  Exact inference is in general intractable (why?) 

  Complexity:               , which is exponential in the # of chains M O(TMKM+1)



Structured Mean Field for Factorial HMM 
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  Structured mean field approximation (with variational parameter     ) 

 
 
  The variational entropy term decouples into sum: one term for each chain 
  In contrast to completely factorized Q, optimizing w.r.t.     needs to run 

forward-backward algorithm as a subroutine 
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Summary so far 

  Mean field methods minimizes KL divergence of variational 
distribution and target distribution by restricting the class of 
variational distributions 

  It yields a lower bound of the log partition function, hence is a 
popular method to implement the approximate E-step of EM 
algorithm 
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Variational Principle 



Inference Problems in Graphical Models 

  Undirected graphical model (MRF): 

 
  The quantities of interest: 

  marginal distributions:  

  normalization constant (partition function):  

  Question: how to represent these quantities in a variational 
form?  

  Use tools from (1) exponential families; (2) convex analysis 
 
 
 

16 

p(x) =
1

Z

Y

C2C
 C(xC)

p(x
i

) =
X

xj ,j 6=i

p(x)

Z



Exponential Families 

  Canonical parameterization (w.r.t measure    ) 

 

  Log normalization constant: 

  it is a convex function (Prop 3.1 in Wainwright & Jordan) 
  Effective canonical parameters: 

  Regular family: 

Canonical Parameters Sufficient Statistics Log partition Function 

A(✓) = log

Z
exp{✓T�(x)}dx

⌫



Examples: 
Examples: Scalar exponential families

Family X ν log p(x; θ) A(θ)

Bernoulli {0, 1} Counting θx − A(θ) log[1 + exp(θ)]

Gaussian R Lebesgue θ1x + θ2x2 − A(θ) 1
2 [θ1 + log 2πe

−θ2
]

Exponential (0, +∞) Lebesgue θ (−x) − A(θ) − log θ

Poisson {0, 1, 2 . . .} Counting θx − A(θ) exp(θ)

h(x) = 1/x!
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Graphical Models as Exponential Families 

  Undirected graphical model (MRF): 

  MRF in an exponential form: 

                     can be written in a linear form after some 
reparameterization  

  Sufficient statistics must respect the structure of graph 
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Example: Hidden Markov Model 

  

 
  What are the sufficient statistics? 

  What are the corresponding canonical parameters? 
 

  A compact form 

Special case: Hidden Markov model

• Markov chain {X1,X2, . . .} evolving in time, with noisy observation

Yt at each time t

PSfrag replacements

θ23(x2, x3)

θ5(x5)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

• an HMM is a particular type of discrete MRF, representing the

conditional p(x |y; θ)

• exponential parameters have a concrete interpretation

θ23(x2, x3) = log p(x3 |x2)

θ5(x5) = log p(y5 |x5)

• the cumulant generating function A(θ) is equal to the log likelihood

log p(y; θ)
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44 Graphical Models as Exponential Families

X := {0,1, . . . , r − 1}, for some integer r > 2. One interpretation of a
state j ∈ X is as a label, for instance defining membership in an image
segmentation problem. Each pairing of a node s ∈ V and a state j ∈ X
yields a sufficient statistic

I s;j(xs) =
{

1 if xs = j

0 otherwise,
(3.10)

with an associated vector θs = {θs;j , j = 0, . . . , r − 1} of canoni-
cal parameters. Moreover, for each edge (s, t) and pair of values
(j,k) ∈ X × X , define the sufficient statistics

I st;jk(xs,xt) =

{
1 if xs = j and xt = k,

0 otherwise,
(3.11)

as well as the associated parameter θst;jk ∈ R. Viewed as an exponential
family, the chosen collection of sufficient statistics defines an exponen-
tial family with dimension d = r|V | + r2|E|. Like the Ising model, the
log partition function is everywhere finite, so that the family is regular.
In contrast to the Ising model, however, the family is overcomplete:
indeed, the sufficient statistics satisfy various linear relations — for
instance,

∑
j∈X I s;j(xs) = 1 for all xs ∈ X .

A special case of this model is the metric labeling problem, in which
a metric ρ : X × X → [0,∞) specifies the parameterization — that
is, θst;jk = −ρ(j,k) for all (j,k) ∈ X × X . Consequently, the canoni-
cal parameters satisfy the relations θst;kk = 0 for all k ∈ X , θst;jk < 0
for all j ̸= k, and satisfy the reversed triangle inequality (that is,
θst;jℓ ≥ θst;jk + θst;kℓ for all triples (j,k,ℓ)). Another special case is the
Potts model from statistical physics, in which case θst;kk = α for all
k ∈ X , and θst;jk = β for all j ̸= k.

We now turn to an important class of graphical models based on con-
tinuous random variables:

Example 3.3(Gaussian MRF). Given an undirected graph G with
vertex set V = {1, . . . ,m}, a Gaussian Markov random field [220] con-
sists of a multivariate Gaussian random vector (X1, . . . ,Xm) that
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Example: Discrete MRF 

 
  In exponential form 
 

  Why is this representation is useful? How is it related to inference 
problem? 
  Computing the expectation of sufficient statistics (mean parameters) 

given the canonical parameters yields the marginals  
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Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯
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Example: Gaussian MRF 

  Consider a zero-mean multivariate Gaussian distribution that 
respects the Markov property of a graph 
  Hammersley-Clifford theorem states that the precision matrix                              

also respects the graph structure 

 
  Gaussian MRF in exponential form 

  Sufficient statistics are    
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⇤ = ⌃�1
3.3 Examples of Graphical Models in Exponential Form 45

Fig. 3.1 (a) Undirected graphical model on five nodes. (b) For a Gaussian Markov random
field, the zero pattern of the inverse covariance or precision matrix respects the graph
structure: for any pair i ̸= j, if (i, j) /∈ E, then Θij = 0.

respects the Markov properties of G (see Section 2.2). It can be
represented in exponential form using the collection of sufficient statis-
tics (xs,x2

s,s ∈ V ; xsxt, (s, t) ∈ E). We define an m-vector θ of param-
eters associated with the vector of sufficient statistics x = (x1, . . . ,xm),
and a symmetric matrix Θ ∈ Rm×m associated with the matrix xxT .
Concretely, the matrix Θ is the negative of the inverse covariance or pre-
cision matrix, and by the Hammersley–Clifford theorem [25, 102, 153],
it has the property that Θst = 0 if (s, t) /∈ E, as illustrated in Fig-
ure 3.1. Consequently, the dimension of the resulting exponential family
is d = 2m + |E|.

With this set-up, the multivariate Gaussian is an exponential fam-
ily3 of the form:

pθ(x) = exp
{
⟨θ, x⟩ +

1
2
⟨⟨Θ, xxT ⟩⟩ − A(θ,Θ)

}
, (3.12)

where ⟨θ, x⟩ :=
∑m

i=1 θixi is the Euclidean inner product on Rm, and

⟨⟨Θ, xxT ⟩⟩ := trace(ΘxxT ) =
m∑

i=1

m∑

j=1

Θijxixj (3.13)

is the Frobenius inner product on symmetric matrices. The integral
defining A(θ,Θ) is finite only if Θ ≺ 0, so that

Ω = {(θ,Θ) ∈ Rm × Rm×m | Θ ≺ 0, Θ = ΘT }. (3.14)

3 Our inclusion of the 1
2 -factor in the term 1

2 ⟨⟨Θ, xxT ⟩⟩ is for later technical convenience.

p(x) = exp

⇢
1

2

⌦
⇥,xxT

↵
�A(⇥)

�
,where ⇥ = �⇤

{x2
s, s 2 V ;xsxt, (s, t) 2 E}



Computing Mean Parameter: Bernoulli  

  A single Bernoulli random variable 

  Computing its mean parameter from canonical parameter: 

  Want to do it in a variational manner: cast the procedure of 
computing mean in an optimization-based formulation 

  

p(x; ✓) = exp{✓x�A(✓)}, x 2 {0, 1}, A(✓) = log(1 + e

✓
)

µ = p(x = 1) = E[x] = e

✓

1 + e
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Conjugate Dual Function 

  Given any function          , its conjugate dual function is: 

  Conjugate dual is always a convex function: pointwise 
supremum of a class of linear functions 

  Under some technical condition on     (convex and lower semi-
continuous), the dual of dual is itself:  

  See Convex Optimization book by Boyd for more details   

f(✓)

f⇤(µ) = sup
✓

{h✓, µi � f(✓)}

f(✓) = sup
µ

{h✓, µi � f⇤(µ)}

f = (f⇤)⇤

f



Computing Mean Parameter: Bernoulli  

  Compute the conjugate 

  Stationary condition 
 
  We find 
 
  The variational form to compute mean: 

  The optimum is achieved at  
  

Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
˘

θ x
¯

with A(θ) = log
ˆ

1 + exp(θ)
˜

.

Let’s compute the dual A∗(µ) := sup
θ∈R

˘

µθ − log[1 + exp(θ)]
¯

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

PSfrag replacements

A(θ)

θ

⟨µ, θ⟩ − A∗(µ)

PSfrag replacements

A(θ)

θ
⟨µ, θ⟩ − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

8

<

:

µ log µ + (1 − µ) log(1 − µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

˘

µ · θ − A∗(µ)
¯

.
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Next Step … 

  The last identity is not a coincidence but a deep theorem in 
general exponential family 

  However, for general graph models/exponential families, 
computing the conjugate dual (negative entropy) is intractable 

  Moreover, the constrain set of mean parameter is hard to 
characterize 

  Relaxing/Approximating them leads to different algorithms: 
loop belief propagation, naïve mean field, and etc. 

   
 
 

26 


