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Recap 

  Loopy belief propagation (sum-product) algorithm is a method 
to find the stationary point of Bethe free energy 
  based on direct approximation of Gibbs free energy 
  will revisit BP and Bethe approximation from another point of view later 

  Today, we will look at another approximation inference 
method based on restricting the family of approximation 
distribution 
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Variational Methods 

  “Variational”: fancy name for optimization-based formulations 
  i.e., represent the quantity of interest as the solution to an optimization 

problem 
  approximate the desired solution by relaxing/approximating the 

intractable optimization problem 

  Examples: 
  Courant-Fischer for eigenvalues: 

    

  Linear system of equations: 
  variational formulation: 

 

  for large system, apply conjugate gradient method  
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Inference Problems in Graphical Models 

  Undirected graphical model (MRF): 

  The quantities of interest: 

  marginal distributions:  

  normalization constant (partition function):  

  Question: how to represent these quantities in a variational 
form? 
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                           is a complicated function of true marginals and 
hard to compute 

  Idea: construct a           such that it has a nice functional form 
of beliefs (approximate marginals) and easy to optimize 

  approach 1: directly approximate with               , e.g. Bethe approximation 

  approach 2: restrict       in a tractable class of distributions 

Variational Formulation 

F(P,P) = ! logZ

KL(Q || P) = !HQ (X)! EQ log!C (xC )
C
" + logZ

F(P,Q) Gibbs Free Energy 

F(P,Q)

F
!

(P,Q)

Q

F (P,Q) ⇡ F̂ (P,Q) = GBethe({qi(xi)}, {qij(xi, xj)})



 

  Restrict Q for which HQ is feasible to compute 
  exact objective to minimize 
  tightened feasible set 
  yields a lower bound on the log partition function log Z 

  Q is a “simple” parameterized approximating distribution 
  free parameters to tune are called variational parameters 

Mean Field Methods 
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Naïve Mean Field 

  Completely factorized variational distribution 
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Naïve Mean Field Free Energy 

  Consider a pairwise Markov random field 

  Naïve mean field free energy 

  Use coordinate descent to optimize with respect to q 
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  Ising model in {0,1} representation 

 

  The true marginals are the mean parameters 
 

  The naïve mean field update equations 

 

                                            is the variational mean parameter at node i 
  the variational mean parameters are coupled among neighbors 

qi := qi(xi = 1) = Eq[xi]

Naïve Mean Field for Ising Model 

p(x) / exp

(
P
i2V

xi✓i +
P

(i,j)2E

xixj✓ij

)

qi  �

 
✓i +

P
j2N(i)

✓ijqj

!

µi = p(xi = 1) = Ep(xi)



Derivation 

  Setting to zero gives us 

  That is the mean field equation 
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  Mean field theory is general to any tractable sub-graphs 
  Naïve mean field is based on the fully unconnected sub-graph 
  Variants based on structured sub-graphs can be derived, such 

as trees, chains, and etc. 

Structured Mean Field 
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Factorial HMM (Ghahramani & Jordan 97’) 

  Can be used to model multiple independent latent processes 
  Exact inference is in general intractable (why?) 

  Complexity:               , which is exponential in the # of chains M O(TMKM+1)



Structured Mean Field for Factorial HMM 
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  Structured mean field approximation (with variational parameter     ) 

 
 
  The variational entropy term decouples into sum: one term for each chain 
  In contrast to completely factorized Q, optimizing w.r.t.     needs to run 

forward-backward algorithm as a subroutine 
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Summary so far 

  Mean field methods minimizes KL divergence of variational 
distribution and target distribution by restricting the class of 
variational distributions 

  It yields a lower bound of the log partition function, hence is a 
popular method to implement the approximate E-step of EM 
algorithm 
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Variational Principle 



Inference Problems in Graphical Models 

  Undirected graphical model (MRF): 

 
  The quantities of interest: 

  marginal distributions:  

  normalization constant (partition function):  

  Question: how to represent these quantities in a variational 
form?  

  Use tools from (1) exponential families; (2) convex analysis 
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Exponential Families 

  Canonical parameterization (w.r.t measure    ) 

 

  Log normalization constant: 

  it is a convex function (Prop 3.1 in Wainwright & Jordan) 
  Effective canonical parameters: 

  Regular family: 

Canonical Parameters Sufficient Statistics Log partition Function 

A(✓) = log

Z
exp{✓T�(x)}dx

⌫



Examples: 
Examples: Scalar exponential families

Family X ν log p(x; θ) A(θ)

Bernoulli {0, 1} Counting θx − A(θ) log[1 + exp(θ)]

Gaussian R Lebesgue θ1x + θ2x2 − A(θ) 1
2 [θ1 + log 2πe

−θ2
]

Exponential (0, +∞) Lebesgue θ (−x) − A(θ) − log θ

Poisson {0, 1, 2 . . .} Counting θx − A(θ) exp(θ)

h(x) = 1/x!
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Graphical Models as Exponential Families 

  Undirected graphical model (MRF): 

  MRF in an exponential form: 

                     can be written in a linear form after some 
reparameterization  

  Sufficient statistics must respect the structure of graph 
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Example: Hidden Markov Model 

  

 
  What are the sufficient statistics? 

  What are the corresponding canonical parameters? 
 

  A compact form 

Special case: Hidden Markov model

• Markov chain {X1,X2, . . .} evolving in time, with noisy observation

Yt at each time t

PSfrag replacements

θ23(x2, x3)

θ5(x5)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

• an HMM is a particular type of discrete MRF, representing the

conditional p(x |y; θ)

• exponential parameters have a concrete interpretation

θ23(x2, x3) = log p(x3 |x2)

θ5(x5) = log p(y5 |x5)

• the cumulant generating function A(θ) is equal to the log likelihood

log p(y; θ)
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44 Graphical Models as Exponential Families

X := {0,1, . . . , r − 1}, for some integer r > 2. One interpretation of a
state j ∈ X is as a label, for instance defining membership in an image
segmentation problem. Each pairing of a node s ∈ V and a state j ∈ X
yields a sufficient statistic

I s;j(xs) =
{

1 if xs = j

0 otherwise,
(3.10)

with an associated vector θs = {θs;j , j = 0, . . . , r − 1} of canoni-
cal parameters. Moreover, for each edge (s, t) and pair of values
(j,k) ∈ X × X , define the sufficient statistics

I st;jk(xs,xt) =

{
1 if xs = j and xt = k,

0 otherwise,
(3.11)

as well as the associated parameter θst;jk ∈ R. Viewed as an exponential
family, the chosen collection of sufficient statistics defines an exponen-
tial family with dimension d = r|V | + r2|E|. Like the Ising model, the
log partition function is everywhere finite, so that the family is regular.
In contrast to the Ising model, however, the family is overcomplete:
indeed, the sufficient statistics satisfy various linear relations — for
instance,

∑
j∈X I s;j(xs) = 1 for all xs ∈ X .

A special case of this model is the metric labeling problem, in which
a metric ρ : X × X → [0,∞) specifies the parameterization — that
is, θst;jk = −ρ(j,k) for all (j,k) ∈ X × X . Consequently, the canoni-
cal parameters satisfy the relations θst;kk = 0 for all k ∈ X , θst;jk < 0
for all j ̸= k, and satisfy the reversed triangle inequality (that is,
θst;jℓ ≥ θst;jk + θst;kℓ for all triples (j,k,ℓ)). Another special case is the
Potts model from statistical physics, in which case θst;kk = α for all
k ∈ X , and θst;jk = β for all j ̸= k.

We now turn to an important class of graphical models based on con-
tinuous random variables:

Example 3.3(Gaussian MRF). Given an undirected graph G with
vertex set V = {1, . . . ,m}, a Gaussian Markov random field [220] con-
sists of a multivariate Gaussian random vector (X1, . . . ,Xm) that
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Example: Discrete MRF 

 
  In exponential form 
 

  Why is this representation is useful? How is it related to inference 
problem? 
  Computing the expectation of sufficient statistics (mean parameters) 

given the canonical parameters yields the marginals  
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Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯
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Example: Gaussian MRF 

  Consider a zero-mean multivariate Gaussian distribution that 
respects the Markov property of a graph 
  Hammersley-Clifford theorem states that the precision matrix                              

also respects the graph structure 

 
  Gaussian MRF in exponential form 

  Sufficient statistics are    
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⇤ = ⌃�1
3.3 Examples of Graphical Models in Exponential Form 45

Fig. 3.1 (a) Undirected graphical model on five nodes. (b) For a Gaussian Markov random
field, the zero pattern of the inverse covariance or precision matrix respects the graph
structure: for any pair i ̸= j, if (i, j) /∈ E, then Θij = 0.

respects the Markov properties of G (see Section 2.2). It can be
represented in exponential form using the collection of sufficient statis-
tics (xs,x2

s,s ∈ V ; xsxt, (s, t) ∈ E). We define an m-vector θ of param-
eters associated with the vector of sufficient statistics x = (x1, . . . ,xm),
and a symmetric matrix Θ ∈ Rm×m associated with the matrix xxT .
Concretely, the matrix Θ is the negative of the inverse covariance or pre-
cision matrix, and by the Hammersley–Clifford theorem [25, 102, 153],
it has the property that Θst = 0 if (s, t) /∈ E, as illustrated in Fig-
ure 3.1. Consequently, the dimension of the resulting exponential family
is d = 2m + |E|.

With this set-up, the multivariate Gaussian is an exponential fam-
ily3 of the form:

pθ(x) = exp
{
⟨θ, x⟩ +

1
2
⟨⟨Θ, xxT ⟩⟩ − A(θ,Θ)

}
, (3.12)

where ⟨θ, x⟩ :=
∑m

i=1 θixi is the Euclidean inner product on Rm, and

⟨⟨Θ, xxT ⟩⟩ := trace(ΘxxT ) =
m∑

i=1

m∑

j=1

Θijxixj (3.13)

is the Frobenius inner product on symmetric matrices. The integral
defining A(θ,Θ) is finite only if Θ ≺ 0, so that

Ω = {(θ,Θ) ∈ Rm × Rm×m | Θ ≺ 0, Θ = ΘT }. (3.14)

3 Our inclusion of the 1
2 -factor in the term 1

2 ⟨⟨Θ, xxT ⟩⟩ is for later technical convenience.

p(x) = exp

⇢
1

2

⌦
⇥,xxT

↵
�A(⇥)

�
,where ⇥ = �⇤

{x2
s, s 2 V ;xsxt, (s, t) 2 E}



Computing Mean Parameter: Bernoulli  

  A single Bernoulli random variable 

  Computing its mean parameter from canonical parameter: 

  Want to do it in a variational manner: cast the procedure of 
computing mean in an optimization-based formulation 

  

p(x; ✓) = exp{✓x�A(✓)}, x 2 {0, 1}, A(✓) = log(1 + e

✓
)

µ = p(x = 1) = E[x] = e

✓

1 + e
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Conjugate Dual Function 

  Given any function          , its conjugate dual function is: 

  Conjugate dual is always a convex function: pointwise 
supremum of a class of linear functions 

  Under some technical condition on     (convex and lower semi-
continuous), the dual of dual is itself:  

  See Convex Optimization book by Boyd for more details   

f(✓)

f⇤(µ) = sup
✓

{h✓, µi � f(✓)}

f(✓) = sup
µ

{h✓, µi � f⇤(µ)}

f = (f⇤)⇤

f



Computing Mean Parameter: Bernoulli  

  Compute the conjugate 

  Stationary condition 
 
  We find 
 
  The variational form to compute mean: 

  The optimum is achieved at  
  

Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
˘

θ x
¯

with A(θ) = log
ˆ

1 + exp(θ)
˜

.

Let’s compute the dual A∗(µ) := sup
θ∈R

˘

µθ − log[1 + exp(θ)]
¯

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

PSfrag replacements

A(θ)

θ

⟨µ, θ⟩ − A∗(µ)

PSfrag replacements

A(θ)

θ
⟨µ, θ⟩ − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

8

<

:

µ log µ + (1 − µ) log(1 − µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

˘

µ · θ − A∗(µ)
¯

.
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Next Step … 

  The last identity is not a coincidence but a deep theorem in 
general exponential family 

  However, for general graph models/exponential families, 
computing the conjugate dual (negative entropy) is intractable 

  Moreover, the constrain set of mean parameter is hard to 
characterize 

  Relaxing/Approximating them leads to different algorithms: 
loop belief propagation, naïve mean field, and etc. 
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