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Model Selection for Mixtures of Mutagenetic
Trees

Junming Yin, Niko Beerenwinkel, Jörg Rahnenführer, and Thomas Lengauer

Abstract

The evolution of drug resistance in HIV is characterized by the accumulation of resistance-
associated mutations in the HIV genome. Mutagenetic trees, a family of restricted Bayesian tree
models, have been applied to infer the order and rate of occurrence of these mutations.
Understanding and predicting this evolutionary process is an important prerequisite for the rational
design of antiretroviral therapies. In practice, mixtures models of K mutagenetic trees provide
more flexibility and are often more appropriate for modelling observed mutational patterns.

Here, we investigate the model selection problem for K-mutagenetic trees mixture models.
We evaluate several classical model selection criteria including cross-validation, the Bayesian
Information Criterion (BIC), and the Akaike Information Criterion. We also use the empirical
Bayes method by constructing a prior probability distribution for the parameters of a mutagenetic
trees mixture model and deriving the posterior probability of the model. In addition to the model
dimension, we consider the redundancy of a mixture model, which is measured by comparing the
topologies of trees within a mixture model. Based on the redundancy, we propose a new model
selection criterion, which is a modification of the BIC.

Experimental results on simulated and on real HIV data show that the classical criteria tend to
select models with far too many tree components. Only cross-validation and the modified BIC
recover the correct number of trees and the tree topologies most of the time. At the same optimal
performance, the runtime of the new BIC modification is about one order of magnitude lower.
Thus, this model selection criterion can also be used for large data sets for which cross-validation
becomes computationally infeasible.
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1 Introduction

Drug resistance presents a major obstacle to successful treatment of HIV in-
fected patients. The emergence of resistant escape mutants in the virus popula-
tion results in therapy failure and limits future treatment options. Understand-
ing this evolutionary process is important for the design of effective antiviral
treatment strategies. The development of drug resistance is characterized by
the ordered accumulation of amino acid changes in the viral genome (Boucher
et al., 1992; Molla et al., 1996). We have previously developed a probabilistic
graphical model, namely the mutagenetic trees mixture model (Beerenwinkel
et al., 2005a), to describe this accumulative evolutionary process.

The basic building block of this model is a weighted directed tree, which was
introduced by Desper et al. (1999) in the context of oncogenesis. Vertices of the
tree represent binary random variables that indicate the occurrence of genetic
events (mutations). Each edge is weighted with the conditional probability
of the child event given that the parent event has occurred. Thus, the model
aims at identifying directed dependencies between mutational events.

Mixture models of mutagenetic trees can identify multiple evolutionary
pathways acting on the same genetic events (Beerenwinkel et al., 2005a). Each
such process is represented in one specialized component of the mixture model.
A K-mutagenetic trees mixture model consisting of K tree components can
be learned from cross-sectional data by an Expectation Maximization (EM)
algorithm.

However, the number K of tree components is usually unknown. If K is
chosen too small, it is impossible to detect all mutational pathways present
in the data; if K is chosen too large, overfitting or redundancy results. In
this paper, we develop and evaluate methods that address this model selection
problem for mixture models of mutagenetic trees.

Besides the ability to generalize well, we are particularly interested in the
interpretability of the estimated model. Indeed, the mutational pathways rep-
resented in the trees might indicate functional constraints of the molecule and
even suggest the choice of specific therapies. Thus, among different mod-
els with similar predictive power on unseen data, we prefer the most concise
model. In general, this means that models with few tree components are
preferred over models with many components if they have similar estimated
extra-sample performance.

A standard method for model selection is based on cross-validation and on
picking the least complex model within one standard error of the best perform-
ing model (Hastie et al., 2001). However, this approach is too computationally
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expensive for most real world applications. Here, we pursue a more practical
approach and consider variations of Bayesian model selection. We investigate
the empirical Bayes method, the Bayesian Information Criterion (BIC), and
the Akaike Information Criterion (AIC) for mutagenetic tree mixture mod-
els. In particular, we show how to approximate the marginal likelihood and
compute the effective number of parameters of this model.

We also present a new modified version of the BIC that extends the stan-
dard BIC heuristically by penalizing redundancy in the mixture model. Ex-
periments on simulated and real world HIV data show that empirical Bayes,
standard BIC, and AIC tend to select models that contain repetitive and
redundant tree structures. Both cross-validation and the modified BIC per-
form significantly better than those methods, and this result holds for three
different measures of the performance of recovering the true model structure.
Thus, unlike standard BIC the modified BIC provides a competitive and much
faster alternative to cross-validation with sizeable real world data sets. In ad-
dition, the modified BIC yields models with increased interpretability, since
the selected model tends to avoid repetitive structure among different tree
components, even if the repetition would not penalize generalizability of the
model.

The program code for the modified BIC and all other tested criteria has
been added to the Mtreemix software package for statistical inference with
mutagenetic tree models (Beerenwinkel et al., 2005b).

2 Mutagenetic Trees Mixture Models

In this section, we recall the definition and basic properties of mixtures of
mutagenetic trees. We start with the single tree model.

2.1 Mutagenetic Trees

A mutagenetic tree T = (V, E) for ℓ genetic events {1, . . . , ℓ} is a connected
branching on the vertices V = {0, 1, . . . , ℓ} rooted at 0. The set E ⊆ V × V
denotes the edges of T . For each vertex v ∈ V , we denote by pa(v) its parent
and by ch(v) its children in T . The vertices of T correspond to binary random
variables X0, X1, . . . , Xℓ. The event {Xv = 1} indicates the occurrence of
mutation v. The variable X0 serves only to simplify notation, and we set
Pr(X0 = 1) = 1.

Let p ∈ [0, 1]ℓ be a parameter vector. We write pv (v ∈ V \ {0}) for the
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Figure 1: Mutagenetic tree for the development of zidovudine resistance.
Nodes are labeled with resistance-associated mutations in the HIV-1 reverse
transcriptase (sequence position followed by substituted amino acids), edge
labels represent conditional probabilities between mutational events.

coordinates of p, and regard pv as the weight of the edge (pa(v), v) ∈ E. The
mutagenetic tree model T induced by T is defined as the Bayesian tree model
(Jordan, 2004) on (V, E) with transition matrices

(

P (Xv = b | Xpa(v) = a)
)

a,b=0,1
=

(

1 0
1 − pv pv

)

, v = 1, . . . ℓ.

It follows that pv is the conditional probability of event v given that its par-
ent event pa(v) has occurred. Furthermore, the first row of the transition
matrix implies that an event can only occur if its predecessor in the tree has
occurred. Figure 1 shows a mutagenetic tree for the development of resistance
to zidovudine, the first approved antiretroviral drug.

The mutagenetic tree model T = (T, p) defines the following factorization
of the joint probability Pr(X1, . . . , Xℓ) of mutational patterns x ∈ {0, 1}ℓ. Let
V [x] = {v ∈ V | xv = 1} be the set of occurred events specified by the pattern
x. If there is a subset E ′ ⊆ E such that V [x] is the set of all vertices reachable
from 0 in the induced subtree T ′ = (V [E ′], E ′), then

Pr(X = x | T ) = f (T )
x (p) :=

∏

v∈V [x]

pv

∏

pa(v)∈V [x]
v /∈V [x]

(1 − pv). (1)
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If there is no such edge subset, the topology of T does not allow for generating
x and hence Pr(x | T ) = f

(T )
x (p) := 0. We call the mutational patterns

x ∈ {0, 1}ℓ with non-zero probability the compatible states of T . Equation 1
can be computed efficiently by performing a breadth-first search in T .

The structure and the parameters of a mutagenetic tree can be learned
efficiently from cross-sectional data by solving the maximum weight branching
problem in the complete graph on ℓ + 1 vertices (Desper et al., 1999).

Since trees can only represent a limited set of acyclic dependency struc-
tures, this model class is too small for most applications. For example, the
tree displayed in Figure 1 does not capture all of the known pathways to zi-
dovudine resistance. Therefore, we consider the broader class of mixtures of
mutagenetic trees.

2.2 Mixture Models

Consider K mutagenetic trees MK = (T1, . . . TK) for the same genetic events
{1, . . . , ℓ}. The K-mutagenetic trees mixture model MK = (T1, . . . , TK) is
defined as the familiy of distributions of X = (X1, . . . , Xℓ) of the form

Pr(X = x | MK) = f (MK)
x (λ, p) := λ1 f (T1)

x (p1) + · · ·+ λK f (TK)
x (pK). (2)

The mixture model has parameters θ := (λ, p) comprising the tree param-
eters p = (pk)k=1,...,K = (pk,v)k=1,...,K, v=1,...,ℓ and the mixing parameters λ =

(λ1, . . . , λK) such that
∑K

k=1 λk = 1. In this model, in general, not all possi-
ble mutational patterns have positive likelihood. Thus, when applied to real
data, we typically fix the first tree component T1 to be a star with uniform
edge weights (Figure 2). This noise component models events as being inde-
pendent of each other and as occurring with the same probability. If p1,v 6= 0
for all v, then all 2ℓ possible mutational patterns have non-zero probability
in the model. If not stated otherwise, a general mixture model refers to the
unrestricted model without enforced star topology or uniform weights.

The mixture model MK can be regarded as a Bayesian network with a
hidden K-ary random variable Z that is connected by an edge to all roots of
the tree components. The value of Z determines which mutagenetic tree to
use for generating a particular pattern.

The mixture model can be learned by an EM-like algorithm (Beerenwinkel
et al., 2005b). In the E step, the current parameters and structure are used to
compute the responsibilities of the different tree components for the data. In
the M step, the structure and parameters of the tree models are re-estimated
from the weighted data. These two steps are iterated until the increase in
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Figure 2: 3-Mutagenetic trees mixture model for the development of zidovu-
dine resistance. Each tree component is displayed within a box, and its weight
appears in the upper left corner of the box.

likelihood is negligible. In addition to the training patterns, this algorithm
requires as input the number K of tree components.

3 Model Selection Criteria

The determination of the number of tree components in the mixture model is
a model selection problem. Model selection aims at identifying models that
provide an accurate fit to the data, generalize well, and are no more complex
than necessary for explaining the data. The problem can be viewed as an
optimization problem involving two basic components (Ghahramani, 2004):
(1) a strategy for searching through the family of possible models efficiently,
and (2) a measure (criterion) for scoring the models.

In the context of mixtures of mutagenetic trees, the model space is divided
by the number of tree components K. To each K corresponds the K-fold
product of the space of all trees on the vertices {0, 1, . . . , ℓ} rooted at 0. Since
the number of trees grows doubly exponentially in ℓ, we will avoid searching
tree space for efficiency in our model selection criterion that will be introduced
in the following Section 4. There, we restrict ourselves to considering one
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model for each K.
Addressing the second issue of a model selection criterion, a simple and

widely used approach is cross-validation in conjunction with the one-standard-
error rule (Hastie et al., 2001). The score implicitly used by cross-validation
is the estimated extra-sample performance. The motivation for this criterion
lies in the attempt to fit a model, which not only accounts for the training
data, but also generalizes well to unseen data. In order to obtain an accurate
and approximately unbiased estimate of the generalization error, the number
of partitions used in cross-validation needs to be large enough and this can
make the procedure very time-consuming.

3.1 Bayesian Model Selection

The Bayesian method provides an alternative approach to model selection.
The centerpiece of Bayesian model selection is the marginal likelihood, ob-
tained by marginalizing out the parameters of the model. Let the given data
be denoted by D = {x(1), . . . , x(N)}. Regarding the model space as indexed by
the number of tree components K, the marginal likelihood of a mixture model
with K tree components can be written as

Pr(D | K) =

∫∫

Pr(D | MK , θ) Pr(θ | MK) Pr(MK) dθ dMK , (3)

where Pr(MK) denotes the prior over the K tree topologies and Pr(θ | MK)
is the conditional prior over tree parameters given tree topologies. We also
write Pr(D | MK) =

∫

Pr(D | MK , θ) Pr(θ | MK) dθ, and hence Pr(D | K) =
∫

Pr(D | MK) Pr(MK) dMK .
For given tree topologies MK , if we place a conjugate Dirichlet prior on

the parameters θ, we obtain closed-form expressions for Pr(D | MK). There-
fore, the marginal likelihood may be approximated by a simple Monte Carlo
approach that samples n tree topologies M

(1)
K , . . . , M

(n)
K from Pr(MK) to com-

pute

Pr(D | K) ≈
1

n

n
∑

i=1

Pr(D | M
(i)
K ). (4)

Although this approximation is asymptotically correct, the rate of convergence
will be so slow for most applications that it is of little practical value. The
problem in our case is that in the absence of prior knowledge, an uninformative
prior Pr(MK) is chosen, placing little probability mass on tree topologies that
are likely to generate the data D. Hence most contributions to the sum in (4)
will be very small and convergence tends to be slow.
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3.2 Empirical Bayes

Let us consider the empirical Bayes method for model selection (Robert, 2001).
We regard the tree topologies MK as hyperparameters and use the data D to
obtain an estimate M̂K by the learning algorithm described in Beerenwinkel
et al. (2005a). The trees M̂K may be interpreted as our prior belief regarding
the topology of evolutionary pathways that lead to drug resistance. Thus, the
marginal likelihood Pr(D | K) in (3) is approximated by

Pr(D | M̂K) =

∫

Pr(D | M̂K , θ) Pr(θ | M̂K) dθ, (5)

which is equivalent to putting all the probability mass on M̂K in the prior
Pr(MK). Given M̂K , we now show how to place a conditional conjugate prior
over θ and compute Pr(D | M̂K) (Jordan, 2006).

In the absence of prior knowledge, it is common to resort to an uninformive
prior; see (Jordan, 2006) for details. For the mode of this prior distribution,
we define parameters θ̃ = (λ̃, p̃) such that all configurations of the random
vector (Z, X1, . . . , Xℓ) are equally probable. This is achieved by setting λ̃ and
p̃ separately.

For a single tree T̂k, we set p̃k,v := (Ck,v−1)/Ck,v, where Ck,v is the number

of substates compatible with the subtree of T̂k rooted at v. It is shown in the
Appendix how to compute Ck,v, and a formal proof of the uniformity of this
distribution is given. Under p̃k,v the probability of each compatible mutational

pattern is 1/Ck,0, where Ck,0 is the number of compatible states of T̂k. Figure 3
illustrates this definition with a tree T for five genetic events that has eleven
compatible states. For example, Pr(10110 | T, p̃) = (10/11) · (1− 1/2) · (4/5) ·
(1/2) · (1 − 1/2) = 1/11.

For a mixture model, we set λ̃k = Ck,0/
∑K

k=1 Ck,0. Together, the defini-

tions of p̃ and λ̃ imply that the random vector (Z, X1, . . . , Xℓ) is distributed
uniformly with probability λ̃k · (1/Ck,0) = 1/

∑K

k=1 Ck,0.

Next, we define prior probability distributions for λ and p. Like for λ̃ and
p̃, we define the distributions separately. Let Ñ be the number of “equivalent
samples” that are assumed to give rise to the probability assessments of the
mixture model M̂K . For each k, let πk = Ñ λ̃k be a hyperparameter, namely
the number of equivalent samples underlying T̂k. Similarly, we define hyper-
parameters ηk,v = πkp̃k,v. Let π = (π1, . . . , πK) and η = (ηk,v)k=1,...,K, v=1,...,ℓ.
Placing a Dirichlet prior on λ we obtain

Pr(λ | M̂K , π) =
Γ(Ñ)

∏

k Γ(πk)

K
∏

k=1

λπk−1
k ,
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Figure 3: Mutagenetic tree with average parameters p̃ that induce the uniform
distribution on all compatible patterns.

and defining the conjugate Beta distribution for pk,v yields

Pr(pk,v | M̂K , π, η) =
Γ(πk)

Γ(ηk,v)Γ(πk − ηk,v)
(1 − pk,v)

πk−ηk,v−1p
ηk,v−1
k,v .

Furthermore, we assume that the random variables pk,v are independent for
each value of k and v resulting in the following prior distribution for the
parameters p:

Pr(p | M̂K , π, η) =
∏

k

∏

v

Γ(πk)

Γ(ηk,v)Γ(πk − ηk,v)
(1 − pk,v)

πk−ηk,v−1p
ηk,v−1

k,v .

We now turn to the computation of the empirical Bayes score Pr(D |
M̂K) =

∏

x∈D Pr(x | M̂K), for a given value K of the number of tree com-
ponents. Using Equation 2 we find

Pr(x | M̂K) =

∫∫

Pr(x | M̂K , p, λ) Pr(p | M̂K , π, η) Pr(λ | M̂K , π) dp dλ

(2)
=

∫∫ K
∑

k=1

λk Pr(x | T̂k, pk) Pr(p | M̂K , π, η) Pr(λ | M̂K , π) dp dλ

=
K

∑

k=1

∫

λk Pr(λ | M̂K , π)dλk

∫

Pr(x | T̂k, pk) Pr(pk | T̂k, π, η)dpk.
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The two integrals in the last term are identified as the expectations of λk and

of f
(T̂k)
x (pk), respectively. Employing the Dirichlet and Beta distributions we

obtain

Pr(x | M̂K) =
K

∑

k=1

E[λk] E[f (T̂k)
x (pk)] =

K
∑

k=1

λ̃kf
(T̂k)
x (E[pk]) =

K
∑

k=1

λ̃kf
(T̂k)
x (p̃k).

Thus, Pr(x | M̂K) = f
(M̂K)
x (λ̃, p̃) is computed by evaluating the mixture model

at the “average parameters” θ̃ = (λ̃, p̃). In particular, this approximation
of the marginal likelihood does not depend on the number Ñ of equivalent
samples.

3.3 BIC and AIC

One common approximation to the marginal likelihood is the Bayesian In-
formation Criterion (BIC) (Schwarz, 1978) This score consists of a likelihood
term and a model complexity term reflecting the trade-off between goodness-
of-fit and model complexity. This compromise can be regarded as an attempt
to implement “Occam’s Razor” (Jefferys and Berger, 1992), which states that
the selected model should be no more complex than necessary for explaining
the observed data.

For assessing model complexity, BIC uses the effective number of parame-
ters, which is also known as the dimension of the model. Let d be the dimension
of a K-mutagenetic trees mixture model MK . Then, the BIC score is defined
as

BIC(K) = log Pr(D | θ̂, M̂K) −
d

2
log N,

where θ̂ and M̂K denote the maximum likelihood estimates of the parameters
and the tree topologies of the model, respectively, and D denotes the data
of size N . BIC is only asymptotically consistent, i.e., it will choose the true
model if that is contained in the model space as N → ∞. Thus in practice,
BIC is often suboptimal for finite data sets.

A similar score, namely the Akaike Information Criterion (AIC) (Akaike,
1974) is defined as

AIC(K) = log Pr(D | θ̂, M̂K) − d.

Although both criteria reflect the trade-off described above, they have different
motivations and rely on different assumptions (Hastie et al., 2001). We now
turn to computing the model dimension d.

9
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Figure 4: Two mixture models defining the same family of distributions: (a)
mixture model of two trees that are identical in topology; (b) mixture model
consisting of a single copy of the same tree.

4 Model Dimension and Redundancy

The single tree model (K = 1) has ℓ parameters and this is also the dimension
of the model. If the edge weights are restricted to be identical, as in the case
of the noise component, the dimension drops to one. The situation can be
more deceiving for a K-mutagenetic trees mixture model MK . This model
has K + K · ℓ parameters θ = (λ, p) with the relation

∑K

k=1 λk = 1. However,
the dimension of MK can be much smaller than K(ℓ + 1) − 1. For example,
the mixture model in Figure 4(a) can be seen to define the same family of
probability distributions as the single tree model displayed in Figure 4(b).
Indeed, for a 2-paths mixture model with parameters (λ, p1,1, p1,2, p2,1, p2,2),
the single path model with parameters (q1, q2) defines the same distribution if

q1 = λp1,1 + (1 − λ)p2,1 and q2 =
λp1,1p1,2 + (1 − λ)p2,1p2,2

λp1,1 + (1 − λ)p2,1
.

Returning to the general case of a mixture model of mutagenetic trees
MK = (T1, . . . , TK), recall that this model can be regarded as a Bayesian net-
work with the hidden variable Z that determines the choice of tree component.
Consider the mapping from the space of parameters to the probability space
of the model,

f (MK) : R
K(ℓ+1)−1 → R

2ℓ−1, θ 7→
(

f (MK)
x (θ)

)

x∈{0,1}ℓ .

10
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From Equations 1 and 2 we see that f is a polynomial map. Hence, its image
is an algebraic variety, whose dimension equals the dimension d of the statisti-
cal model. Techniques from computational algebraic geometry can be used to
compute d. For example, the dimension of the model displayed in Figure 4 can
be derived directly from the set of algebraic invariants of this model (Beeren-
winkel and Drton, 2005). However, in general, with an increasing number of
genetic events these methods become too computationally expensive.

An alternative approach to computing the dimension d is based on the
Jacobian matrix of the polynomial map f . In the case of a linear mapping
g : R

m → R
n the dimension of the image of g equals the rank of the matrix that

represents g. In general, if g is any smooth mapping, it can be approximated
locally by a linear map that is given by the Jacobian matrix (Spivak, 1979). For
Bayesian networks with hidden variables the rank of the Jacobian is constant
with probability one and equals d (Geiger et al., 1996).

The Jacobian matrix J(θ) of f is obtained by computing the partial deriva-
tives

∂f
(MK)
x (λ, p)

∂λk

= f (Tk)
x (pk) − f (TK)

x (pK),

∂f
(MK)
x (λ, p)

∂pk,v

=











λkf
(Tk)
x (pk)
pk,v

if v ∈ Vk[x]

−λkf
(Tk)
x (pk)

1−pk,v
if v /∈ Vk[x] and pa(v) ∈ Vk[x]

0 otherwise,

where Vk = V [Tk] denotes the vertices of the k-th tree.
Since the rank of J(θ) equals d for almost all parameter values θ, we can

choose random vectors θ(1), . . . , θ(m) and compute the rank numerically. The
dimension d is obtained as the maximum of the resulting ranks of the matrices
J(θ(1)), . . . , J(θ(m)). In our experiments, we use samples of size m = 5. The
dimension d is bounded from above by the minimum of the number of model
parameters and the dimension of the ambient probability simplex:

d ≤ min {K(ℓ + 1) − 1, 2ℓ − 1}. (6)

In Figures 5(a), (b), and (c), three mixture models are displayed that
share one path (the first model component) and that differ in their second
tree component. The models have dimensions 5, 7, and 9, respectively. Thus,
the BIC and AIC terms that penalize model complexity are lowest for (a)
and highest for (c). However, when compared to alternative models consisting
of a single tree, model (a) appears the least reasonable, because it repeats
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Figure 5: Three mixture models of size K = 2 for ℓ = 4 mutations of di-
mensions d = 5, 7, and 9, respectively. The star in (c) is assumed to have
non-uniform edge weights.

most of the structure of the first tree in its second tree. The model (c) has
less redundant structure in the second tree, and intuitively it appears more
difficult to replace this mixture by a single tree model.

In general, adding a similar tree component to a mixture model will re-
sult in only a small increase in dimension, but in a significant increase in
redundancy. This effect is particularly pronounced for small values of ℓ and
moderate to large values of K, because then model components are likely to
share structural features and thus to define common model subvarieties. Fig-
ure 6 illustrates this phenomenon for ℓ = 4 and ℓ = 6 using 500 randomly
generated mixture models with a noise component, for each K = 2, . . . , 6 (see
Section 5.2 for the exact simulation setup).

For ℓ = 4 mutations, the dimension is bounded by 24 − 1 = 15 according
to (6). Overall, the dimension increases with the number of tree components
K, but less so for larger values of K. In fact, many of the 4-mutagenetic trees
mixture models already reach the upper bound of the dimension. For ℓ = 6
mutations, the upper bound on the dimension of 63 is very unlikely to being
attained. In our simulations, even dimension 36 is not exceeded, reflecting the
larger size of tree space that reduces the chance of introducing a redundant
tree component. In both cases, a large variety of redundancy values (to be
defined formally in Section 4.1) is observed for all dimensions, suggesting that
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Figure 6: Relationship between dimension and redundacy. For ℓ = 4 muta-
tions (left panel) and ℓ = 6 mutations (right panel) and K = 2, . . . , 6, the
dimension (x-saxis) and redundancy (y-axis) of 500 randomly generated mod-
els are displayed. Because of the discrete nature of both the dimension and
the redundacy, a small amount of noise has been added to each dimension
to visualize the density of points. In addition, points corresponding to differ-
ent values of K have been untangled by small shifts of the redundancies that
depend only on K. Hence, the differences in redundancy within each of the
4 (for ℓ = 4) or 5 (for ℓ = 6) discrete blocks are manufactured in order to
fascilitate visual perception. All models are generated according to the proce-
dure described in Section 5.2. In particular, due to the noise component the
redundancy can only take the ℓ different values R ∈ {1

ℓ
, 2

ℓ
, . . . , ℓ−1

ℓ
, 1}.

redundancy and dimension measure different features of the models.
Since redundant components do not decrease the log-likelihood of the data

and increase the dimension only weakly, if at all, we expect BIC and AIC to
fail in recovering the true model structure for moderate values of ℓ and K. In
order to address this shortcoming we estimate the redundancy in a mixture
model and penalize it.

4.1 Modified BIC

We define the similarity between two tree components Tk and Tl of a mixture
model by

skl = slk = 1 −
‖Ak − Al‖∞

ℓ
∈ [0, 1],
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where Ak and Al denote the adjacency matrices of Tk and Tl, respectively.
The matrix norm ‖A‖∞ = maxi

∑

j |aij| is the maximum absolute row norm.
Therefore, the term ‖Ai−Aj‖∞ measures the maximum difference of outgoing
edges between the two trees. We define the redundancy R of a mixture model
as the maximum similarity among its tree components,

R = max
k 6=l

skl.

For large K and for models containing redundant structural parts, we want
to incorporate the redundancy R into our model selection criterion. For a
fixed K and data set D, let M̂K be the K-mutagenetic trees mixture model
estimated from D and let d be its dimension. Consider

BICR(K) = log Pr(D | M̂K) − (1 + R) ·
d

2
log N,

which doubles the penalty term for two identical tree components. We use the
weighted average between standard BIC and BICR defined by

BICw(K) = w · BIC(K) + (1 − w) · BICR(K),

with weight w = min( 1
ℓ+1

max(dK − dK−1, 0), 1).
The idea of this weighting is that a small increase in dimension with adding

one tree component indicates repetitive model structure. In this case BICR is
used to penalize redundancy. If the increase dK − dK−1 is large due to new
model structure, standard BIC is applied. The min and max operators are
used to bound w between 0 and 1, because in rare cases d or R may actually
decrease with increasing K, because M̂K is re-estimated for each K.

5 Computational Experiments

In order to assess the performance of the different model selection criteria
we define validation scores and conduct experiments on simulated and on real
data. We compare cross-validation (XV), empirical Bayes (EB), AIC, standard
BIC, and the modified BIC (BICw) introduced in the previous section.

5.1 Validation Scores

Three different scores are used to compare the structure of the true model MK

and the estimated model M̂K̂ based on different model selection criteria. Let
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S = (Skl)k=1,...,K, l=1,...,K̂ be the similarity matrix of pairs of tree components

of MK and M̂K̂ defined by

Skl = 1 −
‖Ak − Âl‖∞

ℓ
,

where Âl is the adjacency matrix of the l-th tree in M̂K̂ . We consider the
following scores:

recov =
1

K

∑

k

max
l

Skl,

prec =
1

K̂

∑

l

max
k

Skl,

dissim =
∑

(k,l)∈M

(1 − Skl) + |K − K̂|,

where M denotes the maximum Sij-weighted bipartite matching between the
tree components of the respective models. The first score (recov) measures the
success in recovering the true model structure, whereas the second score (prec)
measures the preciseness in identifying the true model structure. Our main
focus is on the third score (dissim), which provides a dissimilarity measure
that combines both aspects and also accounts for unmatched trees if K̂ 6= K.
In order to assess the significance of each score, we derive p-values from the
empirical distribution of random scores as described in the following section.

5.2 Simulation Study

The simulation setup is similar to the experimental design in Van Allen and
Greiner (2000). The following procedure was applied 500 times.

1. Draw a “true model” MK at random:

• Fix K = 2 or 3 and ℓ = 4 or 6, and set λ1 = 0.1 and λk = 0.9/(K−1)
for k = 2, . . . , K.

• Fix T1 to be a star and let Tk (k = 2, . . . , K) be a random tree sam-
pled uniformly from topology space. This is achieved by uniformly
sampling (ℓ − 1)-tuples of integers ranging between 0 and ℓ, which
represent the Prüfer encoding of trees (Prüfer, 1918).
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• Draw edge weights p1 and pk,v (k = 2, . . . , K, v = 1, . . . , ℓ) uni-
formly at random from the interval [0.2, 0.8].

2. Draw samples of size N = 100, 300, and 500 from M.

3. Estimate M̂K from the sample for K = 1, . . . , 6 and apply each model
selection criterion (XV + one-standard-error rule, EB, AIC, BIC, and
BICw) to obtain one estimate K̂ for each criterion.

4. For each selected model, apply the validation scores for comparing it
with the true model, and calculate the p-value of each score based on
random scores obtained from 1000 randomly generated models. For the
random models, we draw K from the empirical distribution obtained
from 100 previous simulations of steps 1 to 3, while the topology of each
tree component is randomly generated as above.

Figures 7 and 8 summarize the simulation results. For K = 2 and ℓ =
4, all model selection criteria perform well as measured by recovery (recov)
or preciseness (prec), and they improve with sample size. By contrast, the
dissimilarity score (dissim) was less often significant (dark regions in Figure 8)
for EB, AIC, and standard BIC. For K = 3 and ℓ = 4, those criteria perform
better according to the preciseness score (white regions in Figure 8), but still
considerably worse when evaluated by the dissimilarity score. The picture is
similar for ℓ = 6 events, although EB, AIC, and BIC perform slightly better
here, but the dissimilarity score is still more often significant for XV and BICw.
The decreasing performance gap between BIC and BICw for increasing ℓ may
be explained by the reduced chance of adding redundant structural elements.

The improved dissimilarity performance of XV and BICw over all other
criteria appears to be due to the fact that EB, AIC, and BIC tend to select
too many components for all sample sizes (Figure 7). We note that an in-
creasing number of estimated tree components can improve both recovery and
preciseness and this is the reason for the large number of significant recov
and prec scores. The advantage of XV and BICw over the other approaches
becomes most apparent for the dissimilarity score, which penalizes both poor
tree reconstruction and deviation of the estimated from the true number of
trees.

The EB method is not competitive with the other approaches with respect
to detecting the number of tree components. The reason for this might be
the fact that we only consider M̂K̂ and ignore all the other tree topologies

in computing the marginal likelihood Pr(D | K̂), possibly resulting in a poor
approximation.
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Figure 7: Estimated number of tree components. The x-axis represents the
estimated number of tree components (K̂ ∈ {1, . . . , 6}) and the y-axis its count
in 500 simulations. In each panel, the true number of tree components (K),
the number of mutations (ℓ), and the sample size (N) are fixed.

5.3 Real World Data

We also applied the five model selection criteria to ten data sets consisting
of HIV-1 reverse transcriptase mutation data collected under different drug
therapies. In Table 1, the number of tree components chosen by the different
criteria and their respective running times are compared. The computing time
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Figure 8: Model selection performace. Reported are, for each criterion (cross-
validation (XV), empirical Bayes (EB), Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and modified BIC (BICw)) the num-
ber of times each score (recovery (recov), preciseness (prec), dissimilarity
(dissim)) was among the top 5% of random scores in 500 simulations. In each
panel, the true number of tree components (K), the number of mutations (ℓ),
and the sample size (N) are fixed.
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Therapy N ℓ XV EB AIC BIC BICw

ZDV 364 7 2 (524) 6 (32) 6 (55) 4 (55) 4 (52)
RTV 112 12 3 (350) 6 (18) 6 (37) 6 (40) 3 (42)
EFV 382 6 3 (550) 6 (56) 5 (53) 5 (60) 3 (67)
NVP 601 7 2 (873) 6 (197) 4 (204) 4 (212) 4 (223)
ABC 50 6 2 (134) 6 (17) 4 (14) 4 (13) 2 (15)
NFV 329 10 3 (550) 6 (21) 6 (20) 4 (26) 3 (23)
ZDV + 3TC 448 10 5 (858) 6 (80) 5 (85) 5 (95) 5 (83)
ZDV + ddI 286 9 3 (1237) 6 (123) 6 (103) 6 (98) 3 (146)
d4T + 3TC 177 10 2 (536) 6 (120) 5 (154) 5 (126) 4 (131)
ddI + d4T 106 9 2 (715) 6 (178) 6 (99) 5 (123) 2 (156)

Table 1: Performance on 10 HIV data sets. Reported are the therapy, the size
of the data set (N), the number of mutations (ℓ), and for each model selection
criterion the number of estimated tree components and the running time in
seconds (in parentheses). Therapies are named by the drugs they comprise in
a 3-letter code (’+’ denotes treatment with two drugs).
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Figure 9: Optimal mixture model for the development of resistance to efavirenz
in the HIV-1 reverse transcriptase gene as selected by BIC. See captions of
Figures 1 and 2 for details.

for XV is about an order of magnitude higher than for the other methods. XV
and BICw tend to select similar numbers of trees (in fact, the same number in
6 out of 10 cases), whereas EB, AIC, and BIC consistently prefer models with
more components.

For example, the evolutionary models for the development of resistance to
the drug efavirenz (EFV) obtained with BIC and BICw (or, equivalently, XV)
differ significantly (Figures 9 and 10). The 5-mutagenetic trees mixture model
obtained with BIC displays considerable structural redundancy. Indeed, all
edges appearing in the second, fourth and fifth tree of the BIC model (Figure 9)
are present in the second component of the BICw model (Figure 10). The third
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Figure 10: Optimal mixture model for the development of resistance to
efavirenz in the HIV-1 reverse transcriptase gene as selected by BICw. See
captions of Figures 1 and 2 for details.

components of both mixture models are topologically identical. Thus, both XV
and the modified BIC criterion select a much more parsimonious model and
BICw does so in one minute as opposed to XV which requires nine minutes
of computing time. We find the modified BIC to be the fastest and best
performing model selection criterion among the five criteria we have tested.

6 Conclusions

Mixture models of mutagenetic trees provide a family of biologically inter-
pretable models for evolutionary processes that can be described as an accu-
mulation of permanent genetic changes along multiple pathways. The con-
ventional cross-validation approach to detecting the appropriate number of
tree components in the mixture model is computationally too expensive such
that it is infeasible for large data sets arising in applications. Here we have
explored alternative model selection criteria, including empirical Bayes, the
Bayesian Information Criterion, and the Akaike Information Criterion, and
we have developed a new modified variant of BIC that penalizes redundant
tree tolopogies. Empirical Bayes involved approximating the marginal likeli-
hood, which was achieved in a closed form expression after construction of an
uninformative prior. The speed-up of the other methods over cross-validation
is based on measuring model complexity by the model dimension.

All five model selection criteria were applied to simulated and real world
data sets. Only cross-validation and our modified BIC score showed satisfying
performance in recovering true model structure over the investigated range
of parameters. Given the considerable speed-up of the modified BIC, this
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criterion appears most useful for practical applications. As such it has been
implemented in the Mtreemix software package (Beerenwinkel et al., 2005b).

Future work will include the application of more sophisticated similarity
measures between trees, in order to better capture the redundancy of the mix-
ture model. Further investigation of the relationship between the dimension
and the structural redundancy of the mixture model from an algebro-geometric
point of view is also a direction of future research.
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A Average Parameters

We provide here a formal derivation of the “average parameters” used in Sec-
tion 3.2.

Let T = (V, E) be a mutagenetic tree and denote by Cv the number of
compatible substates of the subtree rooted at v ∈ V . In particular, C0 is
the number of compatible states of T . The cardinalities Cv can be computed
as follows (cf. Beerenwinkel and Drton (2005), Algorithm 14.5). Visiting the
vertices of T in reverse topological order, we have for all v ≥ 1,

Cv =

{

2 if v is a leaf

1 +
∏

w∈ch(v) Cw else

and C0 =
∏

w∈ch(0) Cw, because the compatible states of any tree arise as the

all zero state (0, . . . , 0) and the combinations of substates that are compatible
with the subtrees rooted at each of the children of the root.

Proposition 1. The parameters p̃v := (Cv − 1)/Cv define the uniform distri-

bution, i.e., Pr(x | T, p̃) = 1/C0 for all compatible states x ∈ {0, 1}ℓ.

Proof. We proceed by induction on the number of vertices ℓ+1. If ℓ = 1, then
p̃1 = 1/2 and Pr(X1 = 0 | T, p̃) = Pr(X1 = 1 | T, p̃) = 1/2.
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Let ℓ > 1. We decompose the joint distribution of X according to the first
branching induced by the root and its children:

Pr(x | T, p̃) =
∏

w∈ch(0)
xw=1

p̃w Pr(x[w] | T, p̃, x[w] 6= (0, . . . , 0)) ·
∏

w∈ch(0)
xw=0

(1 − p̃w),

where x[w] denotes the subpattern induced by the variables that appear in
the subtree rooted at w. Now, Pr(x[w] | T, p̃) = 1/Cw by hypothesis. Hence
Pr(x[w] | T, p̃, x[w] 6= (0, . . . , 0)) = 1/(Cw − 1) and we have

Pr(x | T, p̃) =
∏

w∈ch(0)
xw=1

Cw − 1

Cw

1

Cw − 1
·

∏

w∈ch(0)
xw=0

1

Cw

=
∏

w∈ch(0)

1

Cw

=
1

C0
.
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Schäffer A.A. (1999). Inferring tree models for oncogenesis from com-
parative genome hybridization data, J. Comp. Biol. 6(1):37–51.

22

Statistical Applications in Genetics and Molecular Biology, Vol. 5 [2006], Iss. 1, Art. 17

DOI: 10.2202/1544-6115.1164

Brought to you by | University of California - Berkeley (University of California - Berkeley)
Authenticated | 172.16.1.226

Download Date | 5/9/12 4:04 AM



Dempster A.P., Laird N.M. and Rubin D.B. (1977). Maximum likelihood
from incomplete data via the EM algorithm (with discussion). J. R.
Statist. Soc. B 39:1–38.

Geiger D., Heckerman D. and Meet C. (1996). Asymptotic model selection
for directed networks with hidden variables. Proc. 12th Conf. on Un-
certainty in Artificial Intelligence (UAI ’96), pp. 158-168.

Ghahramani Z. (2004). Unsupervised Learning, In Bousquet, O., Raetsch,
G. and von Luxburg, U. (eds) Advanced Lectures on Machine Learning
LNAI 3176, chapter 5. Springer, Heidelberg.

Hastie T., Tibshirani R. and Friedman J. (2001). The Elements of Statistical
Learning. Springer, New York, NY.

Jefferys W.H. and Berger J.O. (1992). Ockham’s razor and Bayesian analysis,
American Scientist 80:64–72.

Jordan M. I. (2004). Graphical models. Statistical Science (Special Issue on
Bayesian Statistics) 19:140–155.

Jordan M. I. (2006). An Introduction to Probabilistic Graphical Models.
Forthcoming.

Molla A. et al. (1996). Ordered accumulation of mutations in HIV protease
confers resistance to ritonavir. Nat. Med. 2:760–766.
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