
Appendix
A Scalable Approach to Probabilistic Latent Space Inference of

Large-Scale Networks

A Details of Stochastic Variational Inference
Exact form of the variational lower bound. We adopted a structured mean-field approximation method, in which the
true (but intractable) posterior of latent variables p(s,θ,B | E, α, λ) is approximated by a partially factorized distribution
q(s,θ,B),

q(s,θ,B) = q(s | φ)q(θ | γ)q(B | η)

=
∏

(i,j,k)∈I

q(si,jk, sj,ik, sk,ij | φijk)
N∏
i=1

q(θi | γi)
K∏
x=1

q(Bxxx | ηxxx)
K∏
x=1

q(Bxx | ηxx)q(B0 | η0), (1)

where I is the set of triples with triangular motifs formed: I = {(i, j, k) : i < j < k,Eijk = 1, 2, 3 or 4}. |I| = O(Nδ2)
after δ-subsampling.

The variational lower bound of the log marginal likelihood of the triangular motifs based on this variational distribution is

log p(E | α, λ) ≥ Eq[log p(E, s,θ,B | α, λ)]− Eq[log q(s,θ,B)]
.
= L(φ,η,γ) (2)

= Eq[log p(B0 | λ)]− Eq[log q(B0 | η0)] +
K∑
x=1

{
Eq[log p(Bxx | λ)]− Eq[log q(Bxx | ηxx)]

}
+

K∑
x=1

{
Eq[log p(Bxxx | λ)]− Eq[log q(Bxxx | ηxxx)]

}
+

N∑
i=1

{
Eq[log p(θi | α)]− Eq[log q(θi | γi)]

}
+

∑
(i,j,k)∈I

{
Eq[log p(si,jk | θi) + log p(sj,ik | θj) + log p(sk,ij | θk)] + Eq[log p(Eijk | si,jk, sj,ik, sk,ij ,B)]

}
−

∑
(i,j,k)∈I

Eq[log q(si,jk, sj,ik, sk,ij | φijk)].

The first two line in (2) is the global term g(γ,η) that depends only the global variational paramters γ and η, whereas the last
two lines is a summation of local term `(φijk,γ,η), one for each triangular motif.

Exact local update. For each sampled triangle (i, j, k) in a mini-batch, update the O(K3) entries of the tensor parameters
φijk as follows and then normalize to have sum equal to one.

• For x ∈ {1, . . . ,K},

φxxxijk ∝ exp
{
Eq[logBxxx,2]I[Eijk = 4]+Eq[log(Bxxx,1/3)]I[Eijk 6= 4]+Eq[log θi,x]+Eq[log θj,x]+Eq[log θk,x]

}
.

(3)
• For x, y ∈ {1, . . . ,K} and x 6= y,

φxxyijk ∝ exp
{
Eq[logBxx,3]I[Eijk = 4] + Eq[logBxx,2]I[Eijk = 3] + Eq[log(Bxx,1/2)]I[Eijk = 1 or 2] (4)

+ Eq[log θi,x] + Eq[log θj,x] + Eq[log θk,y]
}
.
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• For distinct x, y, z ∈ {1, . . . ,K},

φxyzijk ∝ exp
{
Eq[logB0,2]I[Eijk = 4]+Eq[log(B0,1/3)]I[Eijk 6= 4]+Eq[log θi,x]+Eq[log θj,y]+Eq[log θk,z]

}
. (5)

The update equations for φxyxijk and φyxxijk are similar to φxxyijk , and therefore we omit the details.

Global update. The natural gradient ∇̃LS(η,γ) with respect to η is

• For x ∈ {1, . . . ,K},

∇̃ηxxx,1
LS(η,γ) = λ+

m

s

 ∑
(i,j,k)∈S

qijk(x, x, x)I[Eijk 6= 4]

− ηxxx,1, (6)

∇̃ηxxx,2
LS(η,γ) = λ+

m

s

 ∑
(i,j,k)∈S

qijk(x, x, x)I[Eijk = 4]

− ηxxx,2. (7)

• For x ∈ {1, . . . ,K},

∇̃ηxx,1
LS(η,γ) = λ+

m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y)I[Eijk = 1, 2] + qijk(x, y, x)I[Eijk = 1, 3] (8)

+ qijk(y, x, x)I[Eijk = 2, 3]

)]
− ηxx,1,

∇̃ηxx,2LS(η,γ) = λ+
m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y)I[Eijk = 3] + qijk(x, y, x)I[Eijk = 2] (9)

+ qijk(y, x, x)I[Eijk = 1]

)]
− ηxx,2,

∇̃ηxx,3LS(η,γ) = λ+
m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y) + qijk(x, y, x) + qijk(y, x, x)

)
I[Eijk = 4]

]
− ηxx,3. (10)

•

∇̃η0,1LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

∑
(x,y,z):x 6=y 6=z

qijk(x, y, z)I[Eijk 6= 4]

− η0,1, (11)

∇̃η0,2LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

∑
(x,y,z):x 6=y 6=z

qijk(x, y, z)I[Eijk = 4]

− η0,2. (12)

The natural gradient ∇̃LS(η,γ) with respect to γ is, for each i = 1, . . . , N and x = 1, . . . ,K,

∇̃γi,xLS(η,γ) = α+
m

s

[ ∑
(j,k):(i,j,k)∈S

∑
y,z

qijk(x, y, z)+
∑

(j,k):(j,i,k)∈S

∑
y,z

qjik(y, x, z)+
∑

(j,k):(j,k,i)∈S

∑
y,z

qjki(y, z, x)

]
−γi,x.

(13)

B More Experimental Details
In the main paper, we omitted certain technical details about our experiments. For completeness, we shall furnish them here.
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Synthetic Data — Statistics for the largest (N = 10, 000) networks
Network Nodes N Edges M Degree mean/median/max 2,3-Tris (δ = 50) Frac. of 3-Tris Roles K

MMSB easy 10K 279K 55.9/56/81 11.0M 0.060 100
MMSB hard 10K 282K 56.4/56/85 11.2M 0.047 100

Power-Law easy 10K 200K 40/41/126 5.2M 0.31 100
Power-Law hard 10K 200K 40/39/176 5.5M 0.23 100

Table 1: Synthetic Data Experiments. Statistics for the largest (N = 10, 000) networks.

B.1 Generating Synthetic Data
Latent Space Models. We use two latent space models as the basis for our experiments — the MMSB model (Airoldi et al.,
2009) (which the MMSB batch variational algorithm solves for), and a model that produces power-law networks from a latent
space. A description of both models follows:

1. MMSB: Let B be a K ×K symmetric block matrix, the probability of an edge from i to j is θTi Bθj . We symmetrize
the resulting network, converting all directed edges into undirected ones.

2. Power-Law latent space model: Let M be the number of edges in the network. We generate all M edges by repeating
the following procedure: (a) pick a vertex i with probability proportional to its degree; (b) draw a destination role
x ∼ Discrete(θi); (c) find the set Vx of all vertices v such that θvx is the largest element of θv (breaking ties at random);
(d) within Vx, pick the destination vertex j with probability proportional to its degree, and generate the undirected edge
(i, j). If (i, j) is already present, we repeat the procedure.

The MMSB model produces networks with “blocks” of nodes characterized by high edge probabilities, whereas the Power-law
model produces “communities” centered around a high-degree hub node. We show that our algorithm rapidly and accurately
recovers latent space roles based on these two notions of node-relatedness.

Ground Truth Role Vectors. For both models, we synthesized ground truth role vectors θi’s to generate networks of varying
difficulty. We generated networks with N ∈ {500, 1000, 2000, 5000, 10000} nodes, with the number of roles growing as
K = N/100 (i.e. linear in N ). We set the ground truth θi’s as follows: first, we divided the nodes into K groups of size 100.
For the x-th group, we set 90 vectors θi’s to have mass 1 in role x, i.e. θix = 1. The remaining 10 vectors θi’s were set to
have mass 0.5 in role x, and 0.5 in another randomly chosen role. This forms a latent space where 90% of the nodes have
pure-membership, and 10% have mixed-membership between 2 roles. We call these networks “MMSB easy” and “Power-Law
easy”, respectively.

We also created a second, more challenging series of networks (we call them “hard”) using role vectors with heavier mixing.
These roles were constructed as follows: for the x-th group, we set 80 vectors θi’s to have mass 1 in role x, 10 vectors θi’s to
have 0.5 mass in role x and 0.5 mass in 1 other random role, and 10 vectors θi’s to have 0.25 mass in role x and 0.25 mass in
3 other random roles. The resulting latent space has nodes with up to 4 roles.

In total, we generated 20 networks: 5 sizes × 2 models × 2 sets of role vectors; summary statistics for the 4 largest N =
10, 000 networks can be found in Table 1. For networks under the Power-Law model, we generated M = 20N edges (so the
average degree is 40). As for networks under the MMSB model, we used a block matrix B with diagonal elements set to 0.2,
and off-diagonal elements set to 0.001. Under this B, the ratio of intra-role to inter-role edges decreases as (N,K) increase
— from approximately 20 : 1 at (N = 1000,K = 10), to 2 : 1 at (N = 10000,K = 100). In this sense, the amount of noise
increases as the network gets larger, making membership recovery harder.
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