A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks Junming Yin, Qirong Ho, Eric P. Xing

Overview

In latent space modeling of networks, we aim to

 reduce the high-dimensional network data to a *K*-dimensional "feature space" – each feature corresponds to a role or a community

For large-scale networks, we need

• inferential mechanisms that scale in both the number of vertices N and the number of roles K

However, popular statistical network models and inference algorithms do not scale linearly

- MMSB batch variational [Airoldi et. al (2008)]: $O(N^2K^2)$
- MMTM Gibbs sampling [Ho et. al (2012)]: $O(NK^3)$

We present

- an O(NK) scalable approach, with competitive or improved accuracy for latent space recovery and link prediction
- an implementation that allows network analysis with millions of nodes and hundreds of roles in hours on a single multi-core machine

Triangular Representation of Networks

Represent networks as a bag of triangular motifs

- record each vertex triple containing 2 or 3 edges
- ignore triples with 0 or 1 edge

A bag of triangular motifs

6-0

δδ 2 - 4 - 5 - 22 - 1 - 31 - 3 - 43 - 4 - 23 - 4 - 54 - 2 - 15 - 2 - 1

Carnegie Mellon University

Why Triangular Representation?

- Well studied in social science, data mining and biology
- Basis for network clustering coefficient, i.e., ratio of 3-edge triangles to 2/3-edge triangles
- Preserves network information -2/3-edge triangles cover almost all the edges except isolated edges
- A succinct representation the number of triangular motifs is bounded by $O(ND^2)$, where D is the maximum vertex degree
- For high-degree networks, use δ -subsampling to maintain $O(N\delta^2)$ triangular motifs
- for each vertex with degree higher than δ , uniformly sample $\delta(\delta 1)/2$ triangles from the set composed of (a) its adjacent 3-edge triangles and (b) its adjacent 2-edge triangles with that vertex in the center

Parsimonious Triangular Model

A generative model for a bag of triangular motifs, not for network simulation

- O(K) parameters for triangle-generating probabilities
- B_{xxx} : if all three role indices are in the same state x
- B_{xx} : if only two role indices exhibit the same state x (called majority role), shared across different minority roles
- B_0 : if the three role indices are all distinct, independent of the role configurations
- Posterior inference of (s, θ, B) by stochastic variational inference
- randomly sample a mini-batch of triangular motifs, and only update their local variational parameters for roles $s_{i,jk}$ in parallel
- accumulate sufficient statistics for the natural gradients of global variational parameters for θ_i and B
- optimize the global variational parameters by a stochastic natural gradient ascent rule

Experimental Results

Latent space recovery on MMSB and power-law graphs with increasing network size N and K

- our method is faster and more accurate on large networks

Link prediction on synthetic and real networks

Link Prediction on Synthetic and Real Networks									
Network Type	Synthetic		Dictionary		Biological	arXiv Collaboration		Internet	Social
Name	MMSB	Power-law	Roget	Odlis	Yeast	GrQc	AstroPh	Stanford	Youtube
Nodes N	2.0K	2.0K	1.0K	2.9K	2.4K	5.2K	18.7K	282K	1.1M
Edges	40K	40K	3.6K	16K	6.6K	14K	200K	2.0M	3.0M
Our Method AUC	0.93	0.97	0.65	0.81	0.75	0.82	0.86	0.94	0.71
MMSB Variational AUC	0.91	0.94	0.72	0.88	0.81	0.77			

Real world networks – convergence on heldout data

• our algorithm is able to infer a 100-role latent space on a 1M-node Youtube social network in 4 hours, using a single machine with 8 threads

recovery accuracy measured by NMI (normalized mutual information) • on N = 1000 networks, the algorithm converges within 1-2 data passes