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Abstract

We consider the problem of sparse variable
selection in nonparametric additive models,
with the prior knowledge of the structure
among the covariates to encourage those vari-
ables within a group to be selected jointly.
Previous works either study the group spar-
sity in the parametric setting (e.g., group
lasso), or address the problem in the non-
parametric setting without exploiting the
structural information (e.g., sparse additive
models). In this paper, we present a new
method, called group sparse additive models
(GroupSpAM), which can handle group spar-
sity in additive models. We generalize the
`1/`2 norm to Hilbert spaces as the sparsity-
inducing penalty in GroupSpAM. Moreover,
we derive a novel thresholding condition for
identifying the functional sparsity at the
group level, and propose an efficient block co-
ordinate descent algorithm for constructing
the estimate. We demonstrate by simulation
that GroupSpAM substantially outperforms
the competing methods in terms of support
recovery and prediction accuracy in additive
models, and also conduct a comparative ex-
periment on a real breast cancer dataset.

1. Introduction

The problem of sparse variable selection for high-
dimensional data arises in a wide spectrum of do-
mains, including signal processing, bioinformatics and
computer vision. `1-regularized methods, such as
lasso (Tibshirani, 1996), are among the most widely
used approaches for variable selection in linear mod-
els. Despite the popularity of linear models, a reliance
on rigid parametric forms limits their ability to model
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nonlinear covariate effects. Additive models (Hastie &
Tibshirani, 1990), where each additive component is
a univariate smooth function of a single covariate, are
nonparametric extensions of linear models and can of-
fer a higher degree of flexibility. Variable selection in
nonparametric additive models is more challenging as
one needs to simultaneously select and fit component
functions. While some recent progress has been made
on this problem by proposing various functional penal-
ties (Lin & Zhang, 2006; Bach, 2008; Ravikumar et al.,
2009), none of these methods is capable of exploiting
the structural information among the covariates that
may exist as prior knowledge in many applications.
The simplest case is a group structure where the co-
variates are partitioned into disjoint groups, and it is
desirable to choose relevant covariates that are sparse
at the group level. In the parametric setting, it has
been shown that if such a group structure exists and
is consistent with the true sparsity pattern of covari-
ates, treating the whole group of covariates as a single
unit in variable selection has the potential to increase
the accuracy of the estimator (Huang & Zhang, 2010).
However, to the best of our knowledge, there has been
no successful attempts to investigate the benefit of con-
sidering the group sparsity in estimating nonparamet-
ric additive models. One example of such a situation
occurs in biology, where the effects of multiple genes on
the phenotype are nonlinear, and the goal is to iden-
tify a few genes from the same functional groups that
are predictive of the phenotype.

In this paper, we fill this gap by presenting a new ap-
proach for variable selection in nonparametric additive
models that can take advantage of the group structure
among the covariates. The proposed method, called
GroupSpAM, achieves functional sparsity at the level
of groups by integrating the spirit of group lasso (Yuan
& Lin, 2006) and the idea of sparse additive mod-
els (SpAM) (Ravikumar et al., 2009). Therefore, the
GroupSpAM estimate combines the predictive power
of SpAM that can model nonlinear covariate effects,
with the advantage of group lasso that can incorpo-
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rate group structure to achieve better support recov-
ery accuracy. Our empirical results provide convincing
evidence of the expected benefits inherited from both
threads of research. Although our main focus here is
on regression, the framework can be easily extended to
classification setting via generalized additive models.

In contrast to the ordinary group lasso, where there
has been much confusion regarding orthonormality of
covariates within a group, GroupSpAM is highly flex-
ible in that no assumptions are made on the design
matrices or on the covariance of component functions
in each group. In this sense, GroupSpAM can be
viewed as a nonparametric extension of the general-
ized group lasso (Friedman et al., 2010), which allows
non-orthonormal covariates within a group, to addi-
tive models. However, while allowing nonlinear co-
variate effects and arbitrary covariance of component
functions within a group gives rise to a new method
that enjoys superior flexibility, there are new tech-
nical challenges in characterizing and computing the
GroupSpAM estimate. To resolve these difficulties, we
propose a novel optimization procedure to simultane-
ously conduct component selection and fitting at the
level of groups. Specifically, our major contributions
in this work include: (1) generalization of `1/`2 norm
to L2 function spaces as the sparsity-inducing penalty
in GroupSpAM; (2) a necessary and sufficient condi-
tion for identifying functional sparsity at the group
level (Theorem 2); (3) an efficient block coordinate
descent algorithm tailored to handle the covariance of
component functions within a group; (4) extension of
GroupSpAM to the case of overlapping groups and a
successful application to a real dataset.

2. Related Work

Lin & Zhang (2006) proposed the COSSO estimator,
which uses the sum of the reproducing kernel Hilbert
space (RKHS) norms of the component functions as
the regularization penalty for simultaneous variable se-
lection and model fitting in smoothing spline ANOVA
models. Ravikumar et al. (2009) introduced a sparse
version of additive models called SpAM by penalizing
the sum of the L2(µ) norms of the component func-
tions. While these methods have been shown to be
effective in estimating sparse nonparametric models,
neither of them is able to take advantage of structural
information. Liu et al. (2009a) extended SpAM to the
multi-task setting; however, the group structure is im-
posed on the tasks instead of on the covariates being
considered here.

Finally, it is important to emphasize that our work
is substantially different from another line of research

that also mixes group lasso and additive models (Bach,
2008; Meier et al., 2009; Huang et al., 2010). These
approaches, in which each component function is ex-
panded into a group of basis functions constructed
from a single covariate, can only perform variable se-
lection at an individual level. In contrast, in this pa-
per, each group consists of a set of several covariates
and our goal is to encourage those variables within a
group to be selected jointly.

Notation Vectors and matrices are denoted by bold-
face letters, and estimates are denoted with a hat. For
a random variable X with distribution µ and a mea-
surable function f of x, ‖f‖ denotes the L2(µ) norm
of f : ‖f‖ =

√
E[f2(X)]. With some slight abuse of

notation we also use ‖ · ‖ to denote the `2 norm of a
real vector. For a set of random variables X1, . . . , Xp,
let Hj = {fj | E[fj(Xj)] = 0, ‖fj‖ < ∞}, j = 1 . . . , p,
with inner product on the space defined as 〈fj , gj〉 =
E[fj(Xj)gj(Xj)]. Sometimes we also use fj := fj(Xj)

for simplicity. We use f̂j ∈ Rn to represent the vector

of evaluations of the fitted function f̂j at the n ob-

served values of Xj , i.e., f̂j = [f̂j(x1j), . . . , f̂j(xnj)]
T .

A group of covariates is a subset g ⊂ {1, . . . , p} and
a set of groups is denoted as G. For any group g and

any vector v, vg = {vj}j∈g. ‖fg‖ =
√∑

j∈g ‖fj‖2.

dg = |g| represents the cardinality of group g. We as-
sume G is available in advance as prior knowledge and
all covariates are covered by at least one group in G.

3. Background

We begin by reviewing some important concepts on
nonparametric regression and (sparse) additive models
to set the stage for our method.

3.1. Smoothing for Nonparametric Regression

Let X1, . . . , Xp be a set of random covariate variables
and Y be a real valued random response variable. Non-
parametric regression is concerned with estimating the
regression function

m(X) = m(X1, . . . , Xp) = E[Y | X1, . . . , Xp]

from a set of n data samples {(x(i), y(i)) : x(i) ∈
Rp, y(i) ∈ R, i = 1, . . . , n}, without assuming any para-
metric form of m(X), such as linearity in X1, . . . , Xp.
We can write Y = m(X) + ε, where E[ε] = 0.

In the case of a single covariate (p = 1), m(X) = E[Y |
X] is known as the orthogonal projection of Y onto the
linear space of all measurable functions of X and can
be written as

m(X) = PY, (1)

where P is the conditional expectation operator E[· |
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X]. By making the assumption that m(x) = E[Y |
X = x] is a smooth function of x, we can estimate
m(x) using a class of smoothing estimators called the
kernel smoothers

m̂(x) =

n∑
i=1

`i(x)y(i) = `(x)Ty, (2)

where `i(x) ∝ Kh(|x(i)−x|) andKh is a smoothing ker-
nel function with the bandwidth h. Kernel smoothers
are examples of linear smoothers because, for each x,
the estimator m̂(x) in (2) is a linear combination of
y(i). Let ŷ ∈ Rn be a vector of fitted values ŷ(i) at the
observed x(i), one consequence of linear smoother is

ŷ = Sy, (3)

where S is the so-called smoother matrix with Sij =
`j(x

(i)), i, j = 1, . . . , n. A comparison of equations (1)
and (3) reveals that the conditional expectation oper-
ator P plays the role of smoother in the population
setting, and consequently a natural estimate of P is
a linear smoother with smoother matrix S. This one-
dimensional smoother, called scatter smoother, is a
building block for fitting more complicated models.

3.2. Additive Models

Although it is straightforward to generalize the one-
dimensional smoothers to p-dimension case, it is well-
known that smoothers break down in high dimensions
due to the curse of dimensionality. This shortcoming
motivates the study of additive models (Hastie & Tib-
shirani, 1990),

m(X1, . . . , Xp) = α+

p∑
j=1

fj(Xj), (4)

where f1, . . . , fp are one-dimensional smooth compo-
nent functions, one for each covariate. For simplic-
ity and identification purposes, we assume α = 0 and
fj ∈ Hj so that E[fj(Xj)] = 0 for each j. The opti-
mization problem of additive models in the population
setting is to minimize

L(f) =
1

2
E
[(
Y −

p∑
j=1

fj(Xj)
)2]

, (5)

over {f : fj ∈ Hj}. The minimizers of (5) can be
shown to satisfy

fj = E
[(
Y −

∑
k 6=j

fk
)
| Xj

]
:= Pj

(
Y −

∑
k 6=j

fk

)
, (6)

where Pj = E[· | Xj ] is the projection operator onto
Hj . Replacing Pj by a linear smoother with smoother
matrix Sj in (6) immediately leads to a sample ver-
sion of the above iterative procedure for fitting addi-
tive model:

f̂j ← Sj

(
y −

∑
k 6=j

f̂k

)
, j = 1, . . . , p, 1, . . . , p, . . . (7)

This simple algorithm is known as backfitting and is
essentially a coordinate descent algorithm.

3.3. SpAM

However, additive models work well only in a low-
dimensional p � n setting. Ravikumar et al. (2009)
proposed a new approach called SpAM for component
selection in high-dimensional additive models. The
idea is to impose a sparsity constraint on the index set
of non-zero component functions via regularization:

min
f :fj∈Hj

L(f) + λΩ(f), (8)

where λ > 0 is the regularization parameter and
Ω(f) =

∑p
j=1 ‖fj‖ behaves like an `1 ball across differ-

ent components to encourage functional sparsity. The
stationary condition of (8) is given by

fj =

[
1− λ

‖PjRj‖

]
+

PjRj , (9)

where Rj = Y −
∑
k 6=j fk is the partial residual and

[·]+ = max{·, 0}. A sample version of the algorithm
can be obtained by inserting sample estimates into (9).

4. GroupSpAM

We are now equipped to present GroupSpAM. In this
section, we assume G is a partition of {1, · · · , p}, i.e.,
the groups in G do not overlap. The optimization
problem of GroupSpAM in the population setting is
formulated as

min
f :fj∈Hj

L(f) + λΩgroup(f), (10)

where L(f) is the expected square error as in (5) and
Ωgroup(f) is the regularization functional penalty de-
fined as

Ωgroup(f) =
∑
g∈G

√
dg‖fg‖ =

∑
g∈G

√
dg

√∑
j∈g

E
[
f2j (Xj)

]
.

The regularization term is the generalization of
(scaled) `1/`2 penalty norm used in group lasso to L2

function spaces. As in group lasso, this mixed norm in-
duces sparsity at the level of groups: the whole group
of functions fg = {fj}j∈g are encouraged to be set to
zero. If each group g is a singleton, this formulation
reduces to SpAM (Ravikumar et al., 2009); if each
component function fj has a linear parametric form,
the optimization problem in (10) is just the population
setting of the ordinary group lasso formulation (Yuan
& Lin, 2006).
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To solve the optimization problem (10), a seemingly
natural strategy is to employ a block coordinate de-
scent algorithm: we optimize the objective functional
in (10) with respect to a particular group of functions
fg at a time while all other groups of functions are
kept fixed. However, as we allow arbitrary covariance
of component functions within a group (see remark be-
low for further discussion), there are two main obsta-
cles for applying such algorithm to our problem: (1) it
creates a new difficulty to characterize the threshold-
ing condition for functional sparsity at the group level;
(2) unlike the ordinary group lasso and SpAM, there
is no longer a closed-form solution to the stationary
condition for each group of functions fg, in the form
of a soft-thresholding operator. Before describing the
details of the algorithm, we first state the stationary
condition that characterizes the optimum of fg.

Theorem 1. Let Rg = Y −
∑
g′ 6=g

∑
j′∈g′ fj′(Xj′) be

the partial residual after removing all functions from
the group g. The stationary condition of the prob-
lem (10) with respect to fg while fixing all other groups
{fg′ : g′ 6= g} is

fj+
∑

j′∈g:j′ 6=j

Pjfj′−PjRg+λ
√
dgsj = 0,∀j ∈ g, (11)

where sg = {sj ∈ Hj}j∈g is a vector of functions be-
longing to the subgradient of ‖fg‖:

sg =

{
{fj/‖fg‖}j∈g if ‖fg‖ 6= 0,

{ug : ‖ug‖ ≤ 1} if ‖fg‖ = 0.

Proof. The proof uses the calculus of variations in
Hilbert space. See Appendix for details.

Next, we prove a necessary and sufficient thresholding
condition at the group level so that we can set a whole
group of functions fg to zeros if (12) holds.

Theorem 2. fj = 0 ∀j ∈ g if and only if√∑
j∈g

E[(PjRg)2] ≤ λ
√
dg. (12)

Proof. Necessity. If fj = 0 ∀j ∈ g, then (11) reduces
to PjRg = λ

√
dgsj ∀j ∈ g, with ‖sg‖ ≤ 1. Thus√∑

j∈g
E[(PjRg)2] = λ

√
dg

√∑
j∈g

E[s2j ] ≤ λ
√
dg.

Sufficiency. We prove by contradiction. If there exists
an fj 6= 0, j ∈ g hence ‖fg‖ 6= 0, equation (11) becomes

PjRg = fj +
∑

j′∈g:j′ 6=j

Pjfj′ +
λ
√
dg

‖fg‖
fj ,∀j ∈ g.

Without loss of generality, we assume g = {1, · · · , |g|}.
The set of equations in (11) can be succinctly written
in the following equivalent form:

QRg = Jfg +
λ
√
dg

‖fg‖
fg, (13)

where Q and J are a vector and matrix of conditional
expectation operators, respectively, defined as

Q =


P1

P2

...
P|g|

 , J =


I P1 · · · P1

P2 I · · · P2

...
...

. . .
...

P|g| P|g| · · · I

 . (14)

Hence∑
j∈g

E[(PjRg)
2] = ‖QRg‖2 =

∥∥∥∥∥Jfg +
λ
√
dg

‖fg‖
fg

∥∥∥∥∥
2

= ‖Jfg‖2 + λ2dg + 2
λ
√
dg

‖fg‖
〈Jfg, fg〉 .

By the fact that

〈Jfg, fg〉 =
∑
j∈g

E
[
f2j + fj

∑
j′∈g:j′ 6=j

Pjfj′
]

=
∑
j∈g

E
[
f2j
]

+
∑
j∈g

∑
j′∈g:j′ 6=j

E [fjE[fj′ | Xj ]]

=
∑
j∈g

E
[
f2j
]

+
∑
j∈g

∑
j′∈g:j′ 6=j

E [fjfj′ ]

= E
[(∑

j∈g
fj
)2] ≥ 0,

we conclude
∑
j∈g E[(PjRg)

2] ≥ λ2dg.

Following the standard additive models, we replace
the conditional expectation operator Pj by a linear
smoother with smoother matrix Sj in the population
conditions (12) and (13) to obtain a sample version of
estimation procedure. Specifically, if the sample esti-
mate of norm ω̂g in (15) is below the threshold λ

√
dg,

the whole group of functions are thresholded to ze-
ros; otherwise, we estimate f̂g by solving the sample
version of (13) in equation (16). See Algorithm 1 for
details. The full block coordinate descent algorithm
of the GroupSpAM procedure is described in Algo-
rithm 2. Performing prediction on new data is es-
sentially the same as in the standard additive mod-
els (Hastie & Tibshirani, 1990).

Remark As we don’t restrict the covariance of com-
ponent functions, for two distinct functions fj and fj′
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Algorithm 1 Thresholding

1: Input: Partial residual R̂g, smoother matrices {Sj :
j ∈ g}, and tuning parameter λ.

2: Output: f̂g = {f̂j : j ∈ g}.

3: Estimate PjRg by smoothing: P̂j = SjR̂g, ∀j ∈ g.

4: Estimate
√∑

j∈g E[(PjRg)2] by

ω̂g =

√
1

n

∑
j∈g

‖P̂j‖2. (15)

5: if ω̂g ≤ λ
√
dg then

6: Set f̂j = 0, ∀j ∈ g.
7: else
8: Estimate f̂g by solving the sample version of (13):

iterate the following fixed point equation over t until
convergence

f̂ (t+1)
g =

(
Ĵ +

λ
√
dg

‖f̂ (t)g ‖/
√
n
I

)−1

Q̂R̂g, (16)

where Q̂ and Ĵ are matrices obtained by replacing
each Pj with Sj in Q and J (equation (14)), respec-
tively.

9: end if
10: Center each f̂j by subtracting its mean

Algorithm 2 Block Coordinate Descent

1: Input: Data X ∈ Rn×p,y ∈ Rn, a partition G of
{1, . . . , p}, and tuning parameter λ.

2: Output: Fitted functions f̂ = {f̂j : j = 1, . . . , p}.
3: Initialize f̂j = 0 ∀j; pre-compute smoother matrices

Sj ∀j.
4: Cycle though group g ∈ G until convergence:

(1) Compute the partial residual R̂g = y −∑
g′ 6=g

∑
j′∈g′ f̂j′

(2) f̂g ←− Thresholding(R̂g, {Sj}j∈g, λ)

in the same group, their covariance Cov(fj , fj′) is not
forced to be zero. By the fact that

Cov(fj , fj′) = E[fjfj′ ] = E[fjE[fj′ | Xj ]],

Pjfj′ = E[fj′ | Xj ] is not restricted to be zero as
well. Therefore, no closed-form solution to the sta-
tionary condition (11) is available and we solve its
sample version by fixed point iteration in (16). On
the other hand, if Pjfj′ is assumed to be zero for all

distinct j, j′ ∈ g in (11), the solution of f̂g can be
directly obtained by applying a soft-thresholding op-

erator: f̂j =

[
1− λ

√
dg

ω̂g

]
+

P̂j , ∀j ∈ g. However, such

an assumption, though leading to a simple closed-form
solution of f̂g, is unrealistic in practice for within-group
component functions.

5. GroupSpAM with Overlap

In this section, we allow overlap between the groups
in G and we are interested in estimating an additive
model whose support is a union of groups. We adopt
the approach of Jacob et al. (2009) by introducing a
set of latent functions hg = {hgj ∈ Hj}j∈g, one set
for each group, and solve the following optimization
problem

min
f ,{hg}g∈G

L(f) + λ
∑
g∈G

√
dg‖hg‖

s.t.
∑
g:j∈g

hgj = fj , j = 1, . . . , p. (17)

The idea is to decompose each original component
function to be the sum of a set of latent functions and
then apply the functional group penalty to the decom-
position. As a consequence, the covariates that are
not in any selected group are removed and the result-
ing support is a union of groups. Once we eliminate f
from (17), the problem reduces to

min
{hg}g∈G

1

2
E
[(
Y −

∑
g∈G

∑
j∈g

hgj (Xj)
)2]

+ λ
∑
g∈G

√
dg‖hg‖.

(18)
Algorithm 2 can be directly applied to solve (18) by
treating each hg as a block.

6. Experiments

6.1. Simulation Study

We generate covariates with compound symmetry co-
variance structure as follows: each covariate Xj =
(Wj + tU)/(1 + t), j = 1, . . . , p, where W1, . . . ,Wp and
U are i.i.d from Uni(-2.5,2.5). For distinct covariates
Xj and Xk, corr(Xj , Xk) = t2/(1 + t2). The setting
t = 0 corresponds to the case of independent covari-
ates. The sample size n = 150, and the dimension of
covariates p = 200 and 1000.

We then generate responses from an additive model
in Rp with two groups of relevant component func-
tions, each of size four (Table 1): Y = m(X) + ε =∑8
j=1 fj(Xj) + ε, where ε ∼ N (0, σ2). The compo-

nent functions are drawn from Lin & Zhang (2006)
and Ravikumar et al. (2009), and are appropriately
scaled so that each group contains a function with rel-
atively low variance. The standard deviation σ of the
noise is carefully chosen to give a signal-to-noise ra-
tio
√

Var(m(X))/σ2 = 3 in the case of uncorrelated
covariates (t = 0). For each training data, we also gen-
erate equal-sized validation data and test data in the
same manner. Validation datasets are used to choose
the value of the parameter λ, and test datasets are
used to measure the predication accuracy of the esti-
mated models in terms of mean squared error (MSE).
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Figure 1. The estimated component functions (solid blue) and true component functions (dashed red) in one simulation
with p = 200, t = 0. All the covariates are scaled to the interval [0, 1]. Black dots in each plot represent the partial
residuals after removing the corresponding estimated component function.

Component Functions Variance

f1(x) = −2 sin(2x) 2.10

f2(x) = x2 3.47

f3(x) = 2 sin(x)
2−sin(x)

0.98

f4(x) = exp(−x) 8.98

f5(x) = x3 + 1.5(x− 1)2 14.57

f6(x) = x 2.08

f7(x) = 3 sin(exp(−0.5x) 0.80

f8(x) = −5φ(x, 0.5, 0.82) 3.76

Table 1. The two groups of true component functions used
in the simulation and their variances assuming x is uni-
formly generated from [−2.5, 2.5]. φ(·, µ, σ2) is the normal
cumulative distribution function (cdf) with mean µ and
standard deviation σ.

Table 2 summarizes the results of applying differ-
ent methods to 100 simulated data for each value of
p = 200, p = 1000 and t = 0, 1, 2. As expected, as
the dimension (p) or the correlation (t) increases, the
problem in general becomes more difficult. For all re-
ported results, we assume a group structure with 50 or
250 blocks of 4 neighboring covariates for GroupSpAM
and group lasso, and use Gaussian kernel smoothers
with the plug-in bandwidths hj = 0.6ŝd(Xj)n

−1/5 for
jth covariate to implement GroupSpAM and SpAM.
For group lasso, we use the implementation in the
state-of-art package SLEP (Liu et al., 2009b); for
COSSO1, we use the Matlab code available from http:

1For p = 1000, we get many warning messages in run-
ning COSSO, which suggests that COSSO might not scale
well to high-dimensional settings (see also Table 2).

//www4.stat.ncsu.edu/~hzhang/cosso.html. In al-
most all cases, GroupSpAM is able to recover all the
true supports of covariates with higher precisions and
have lower MSE on test data. Compared to the group
lasso, GroupSpAM has significantly improved the pre-
dictive power of estimates, and also leads to much
better support recovery when t increases. The im-
provement is mainly in terms of variable selection as
compared to SpAM, showing the benefit of consider-
ing the group sparsity in estimating additive models.
It is particularly interesting to notice that the supports
of component functions with relatively low variances,
i.e., f3 and f7, are hard to be recovered as individual
units by SpAM, but are much easier for GroupSpAM
to select when combined with other components in the
same group. Figure 1 shows the estimated component
functions by GroupSpAM (solid blue line) versus the
true component functions (dashed red line) in one typ-
ical simulation with p = 200, t = 0.

6.2. Breast Cancer Data

In our second experiment, we apply GroupSpAM with
overlap to a breast cancer dataset (van de Vijver et al.,
2002) to demonstrate the potential advantage of using
additive models with group sparsity in a real-world
problem. The dataset consists of gene expression mea-
surements for 8,141 genes collected from 295 breast-
cancer tumors (78 metastatic and 217 non-metastatic).
We are interested in finding a sparse set of genes that
can discriminate the two types of tumors. Instead
of considering individual genes independently, a more
powerful way is to build a predictive model that takes
into account their pathway information. Some genes in
a biological pathway are known to perform the same

http://www4.stat.ncsu.edu/~hzhang/cosso.html
http://www4.stat.ncsu.edu/~hzhang/cosso.html
http://www4.stat.ncsu.edu/~hzhang/cosso.html
http://www4.stat.ncsu.edu/~hzhang/cosso.html
http://www4.stat.ncsu.edu/~hzhang/cosso.html
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p t method precision recall size #f1 #f2 #f3 #f4 #f5 #f6 #f7 #f8 MSE

200 0

GroupSpAM 1.00 (0.00) 1.00 (0.00) 8.00 (0.00) 100 100 100 100 100 100 100 100 7.22 (1.17)
SpAM 0.85 (0.16) 0.82 (0.11) 8.17 (2.36) 83 100 56 100 100 94 27 100 9.61 (2.22)
COSSO 0.66 (0.27) 0.42 (0.15) 7.04 (5.48) 6 1 27 100 50 61 3 88 28.29 (4.39)
GroupLasso 0.95 (0.13) 0.99 (0.05) 8.64 (1.76) 100 100 100 100 99 99 99 99 28.34 (3.10)

200 1

GroupSpAM 0.96 (0.12) 1.00 (0.00) 8.52 (1.66) 100 100 100 100 100 100 100 100 7.01 (1.29)
SpAM 0.81 (0.20) 0.60 (0.11) 7.10 (6.26) 94 82 4 98 100 3 10 86 9.10 (1.74)
COSSO 0.33 (0.21) 0.48 (0.19) 16.08 (10.60) 23 36 42 93 73 27 15 74 16.56 (2.93)
GroupLasso 0.67 (0.38) 0.65 (0.37) 7.96 (6.39) 64 64 64 64 65 65 65 65 20.69 (2.93)

200 2

GroupSpAM 0.89 (0.19) 0.99 (0.07) 9.68 (4.20) 100 100 100 100 98 98 98 98 7.26 (1.78)
SpAM 0.71 (0.22) 0.46 (0.12) 5.90 (3.05) 88 75 0 83 100 0 4 15 8.48 (1.74)
COSSO 0.23 (0.12) 0.41 (0.15) 16.57 (7.47) 11 61 22 90 76 10 10 47 13.72 (2.60)
GroupLasso 0.13 (0.29) 0.12 (0.24) 5.60 (5.46) 14 14 14 14 11 11 11 11 26.19 (3.11)

1000 0

GroupSpAM 1.00 (0.00) 1.00 (0.00) 8.00 (0.00) 100 100 100 100 100 100 100 100 7.21 (1.12)
SpAM 0.86 (0.15) 0.68 (0.14) 6.60 (2.24) 49 91 25 100 100 71 7 97 11.66 (2.73)
COSSO 0.01 (0.00) 0.97 (0.06) 800.05 (1.16) 93 100 97 100 100 100 84 100 36.59 (4.86)
GroupLasso 0.93 (0.15) 0.97 (0.11) 8.80 (2.71) 98 98 98 98 97 97 97 97 29.49 (4.23)

1000 1

GroupSpAM 0.92 (0.17) 0.99 (0.05) 9.12 (3.00) 99 99 99 99 100 100 100 100 7.34 (1.78)
SpAM 0.71 (0.25) 0.52 (0.13) 8.62 (19.38) 77 64 1 92 100 1 4 73 10.34 (2.25)
COSSO 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0 0 0 0 0 0 0 0 21.95 (2.53)
GroupLasso 0.31 (0.35) 0.41 (0.41) 8.92 (8.92) 36 36 36 36 46 46 46 46 21.55 (2.81)

1000 2

GroupSpAM 0.75 (0.30) 0.97 (0.11) 14.64 (14.76) 95 95 95 95 100 100 100 100 8.10 (2.70)
SpAM 0.69 (0.29) 0.34 (0.13) 6.04 (8.37) 59 43 0 65 100 0 1 3 9.69 (2.30)
COSSO 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0 0 0 0 0 0 0 0 26.30 (2.68)
GroupLasso 0.02 (0.12) 0.03 (0.16) 4.36 (4.60) 4 4 4 4 2 2 2 2 25.86 (3.06)

Table 2. Comparison of different methods on simulated data. Shown in 4th, 5th and 6th column are the mean and
standard deviation (shown in parenthesis) of precisions, recalls and sizes of the estimated supports, respectively. The
symbol #fj denotes the number of times jth covariate appears in the estimated models. The last column shows the mean
and standard deviation of the mean squared errors (MSE) of the estimated models on test data sets.

functionality in the cell, hence are more likely to be
involved in the studied phenomenon in a group man-
ner. Furthermore, each gene can participate in multi-
ple pathways, and the studied phenomenon may pos-
sibly depend on the behavior of genes in a complex
way. The GroupSpAM with overlap provides us with
a natural and flexible way to incorporate these prior
information into the biological analysis, where each
group consists of the set of genes in a pathway and
groups are potentially overlapping.

Among all 8, 141 genes, we focus on 3, 510 of them
that belong to at least one canonical pathway in the
Molecular Signatures Database (Subramanian et al.,
2005). We further reduce the gene set to top 300 genes
most correlated with the type of tumor by applying the
sure independence screening (Fan & Lv, 2008). This
step, which excludes the most irrelevant genes, is a
common practice for analyzing microarray data.

Overall, we obtain 1, 369 covariates (gene expression
levels) in 432 groups after covariate duplication. Since
the dataset is heavily unbalanced, we adopt a balanced
loss function, where each positive (negative) sample
is weighted by the proportion of negative (positive)

fold method BER #genes #pathways

1
GroupSpAM 0.353 55 196
SpAM 0.362 91 266
GroupLasso 0.384 44 238

2
GroupSpAM 0.358 44 243
SpAM 0.349 109 302
GroupLasso 0.365 56 248

3
GroupSpAM 0.326 74 149
SpAM 0.333 101 209
GroupLasso 0.346 76 138

Table 3. Comparison of different methods on the breast
cancer dataset. BER refers to the balanced error rate,
which is defined as the average of the errors in each tumor
type. #genes denotes the number of distinct selected genes.
#pathways denotes the number of selected pathways.

samples. To get the classification label from the non-
parametric regression analysis, we simply take the sign
of the predicted responses. Table 3 shows the results
of GroupSpAM, SpAM and group lasso with over-
lap (Jacob et al., 2009) based on the balanced loss
function by a 3-fold cross validation2. As we can see

2When running COSSO, we ran into the same problem
as in the simulation. Hence we left the results of COSSO.



Group Sparse Additive Models

from Table 3, compared to SpAM, it achieves simi-
lar balanced error rates but with less selected genes
and pathways, which could lead to an easier interpre-
tation for genetic functional analysis. As compared to
group lasso, GroupSpAM has an improved balanced
error rate (P = 0.054), suggesting that a better pre-
dictive model can be built by using the more flexi-
ble additive model class. The functional relationship
of the identified genes and pathways to breast cancer
merits further investigation.

7. Conclusions

In this paper, we propose a novel method for variable
selection in nonparametric additive models when there
exists a potentially overlapping group structure among
the covariates. An efficient optimization algorithm is
developed and promising results are obtained on both
simulated and real data. An interesting future direc-
tion is to design new functional penalties to incorpo-
rate more rich structures among the covariates (e.g.,
hierarchical tree structure). Another future work is to
investigate the asymptotic properties of the method,
such as model selection and prediction consistency.
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Appendix: Proof of Theorem 1

Proof. Writing L(f) in (5) as a functional that depends on
fg only, we obtain

L(fg) =
1

2
E
[(
Rg −

∑
j∈g

fj(Xj)
)2]

.

Consider a perturbation of L(fg) along the direction ηg =
{ηj ∈ Hj}j∈g,

L(fg + εηg) =
1

2
E
[(
Rg −

∑
j∈g

(fj(Xj) + εηj(Xj))
)2]

.

The first order approximation of L(fg + εηg)− L(fg) is

ε
∑
j∈g

E
[
ηj(Xj)

(∑
j′∈g

fj′(Xj′)−Rg

)]

= ε
∑
j∈g

E
[
ηj(Xj)E

[(∑
j′∈g

fj′(Xj′)−Rg

)
| Xj

]]

= ε
∑
j∈g

〈
ηj(Xj),E

[(∑
j′∈g

fj′(Xj′)−Rg

)
| Xj

]〉
.

In the second step, we use the iterated expectation
rule to condition on Xj ; in the last step, noting

E
[(∑

j′∈g fj′(Xj′)−Rg

)
| Xj

]
∈ Hj , we express the ex-

pectation in the form of inner product in Hj and thus ob-
tain the gradient of L(fg) as

∇L(fg) =

{
E
[(∑

j′∈g

fj′(Xj′)−Rg

)
| Xj

]}
j∈g

.

Denote Ωgroup(fg) =
√
dg‖fg‖. The stationary condition

of fg for minimizing L(fg) + λΩgroup(fg) is

E
[(∑

j′∈g

fj′(Xj′)−Rg

)
| Xj

]
+ λ

√
dgsj = 0,∀j ∈ g

and can be rewritten in the form of conditional expectation
operator Pj = E[· | Xj ], as in equation (11).


