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•  Group structures among covariates: SNPs within the same gene; genes 
that belong to the same pathway; and etc. 

•  Nonlinear covariate effects: nonlinear effects of genes on the phenotype. 

•  Group variable selection problem in the nonparametric setting. 

•  Additive Models (Hastie & Tibshirani, 1990): 

•  Non-overlapping groups: 

•  Optimization (population version):   

  
 
 
 
 
 
 
•  Challenges:  

•  Characterization of the thresholding condition for functional sparsity 
at the group level. 

•  Unlike group lasso (Yuan & Lin, 2006) and SpAM (Ravikumar et al., 
2009), there is no closed-form solution to the stationary condition for 
each group of functions, in the form of a soft-thresholding operator. 

•  Extensions: 
•  For overlapping groups (Jacob et al., 2009), decompose each 

original component function into the sum of a set of latent functions 
and apply the functional group penalty to the decomposed functions. 

GroupSpAM: Group Sparse Additive Models
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subject to E[fj(Xj)] = 0, j = 1, . . . , p

It contains SpAM and group lasso as special cases.
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GroupSpAM Backfitting Algorithm

Input: Data X ∈ Rn×p,y ∈ Rn, partition G, and parameter λ.

Initialize f̂j = 0 ∀j; pre-compute smoother matrices Sj ∀j.
Cycle through group g ∈ G until convergence:

Compute the residual: �Rg = y −
�

g� �=g

�
j�∈g� f̂j� .

Estimate the group norm: �ωg =

�
1
n

�
j∈g �Sj

�Rg�2.

If �ωg ≤ λ
�
|g|,

Set f̂j = 0, ∀j ∈ g.

Else,

Estimate f̂g by fixed point iteration,

f̂ (t+1)
g =

�
�J+

λ
�

|g|
�f̂ (t)g �/

√
n
I

�−1

�Q�Rg.

Output: Fitted functions f̂ = {f̂j ∈ Rn : j = 1, . . . , p}.
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Stationary Conditions

Theorem
Let Rg = Y −

�
g� �=g

�
j�∈g�

fj�(Xj�) be the partial residual after

removing all functions from group g. The stationary condition
of the problem with respect to fg = {fj}j∈g while fixing all other
groups {fg� : g� �= g} is

fj +
�

j�∈g:j� �=j

E[fj� | Xj ]− E[Rg | Xj ] + λ
�

|g|sj = 0, ∀j ∈ g,

where sg = {sj}j∈g is a vector of functions belonging to the
subgradient of �fg�.

Proof.
Calculus of variations in Hilbert space.

Thresholding Conditions

Theorem
fj = 0 ∀j ∈ g if and only if

��

j∈g
E[(PjRg)2] ≤ λ

�
|g|.

� In the finite sample case, estimate PjRg by smoothing:

�Pj = Sj
�Rg, ∀j ∈ g,

where Sj ∈ Rn×n is a linear smoother (e.g. kernel) matrix

and �Rg ∈ Rn is the estimate of partial residuals after
removing fg.

•  In the finite sample case, estimate the projection           by smoothing: 

     where                    is a linear smoother matrix and                is the  
     estimate of partial residuals after removing group g. 

Sj ∈ Rn×n
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•  The multivariate nonparametric regression problem: 

  

•    

•  A set of potentially overlapping groups of covariates is given a prior. 

•  Goal: estimate a sparse regression function  

     whose supports are a union of predefined groups. 

Problem Setting

Consider the multivariate nonparametric regression problem

Y = m(X1, . . . , Xp) + �

� n data samples: {(x(i), y(i)) : x(i) ∈ Rp, y(i) ∈ R, i = 1, . . . , n}.
� A set of potententiallty overlapping groups of covariates is given a

prior.

Goal: estimate a sparse regression function

m(X1, . . . , Xp) = E[Y | X1, . . . , Xp],

whose supports are a union of predefined groups.
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•  We don’t restrict the correlation structure of component functions in the 
same group: 

Pjfj� := E[fj�(Xj�) | Xj ] �= 0, ∀ j �= j� ∈ g

PjRg

Thresholding Conditions

Theorem
fj = 0 ∀j ∈ g if and only if

��

j∈g
E[(PjRg)2] ≤ λ

�
|g|.
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�Pj = Sj
�Rg, ∀j ∈ g,

where Sj ∈ Rn×n is a linear smoother (e.g. kernel) matrix

and �Rg ∈ Rn is the estimate of partial residuals after
removing fg.

Simulated Data
� Sample size n = 150 and dimension p = 200, 1000.
� True model: Y =

�8
j=1 fj(Xj) + �, where

Xj ∼ Uni(−2.5, 2.5),
corr(Xj , Xk) = t2/(1 + t2), � ∼ N (0,σ2) with σ = 2.02
(SNR = 3.0).

Component Functions Variance

f1(x) = −2 sin(2x) 2.10

f2(x) = x2 3.47

f3(x) = 2 sin(x)
2−sin(x) 0.98

f4(x) = exp(−x) 8.98

f5(x) = x3 + 1.5(x− 1)2 14.57

f6(x) = x 2.08

f7(x) = 3 sin(exp(−0.5x) 0.80

f8(x) = −5φ(x, 0.5, 0.82) 3.76

Simulation Study:  
•  Sample size n = 150 and dimension p = 200, 1000. 

•    

•    

•    

•  For group lasso and GroupSpAM, assume a group 
structure with blocks of 4 neighboring covariates. 

Y =
8�

j=1

fj(Xj) + �

Xj ∼ Uni(−2.5, 2.5),Corr(Xj , Xk) = t2/(1 + t2)

� ∼ N (0,σ2) with σ = 2.02 (SNR = 3.0)

•  Comparisons of difference methods in terms of support recovery and prediction accuracy 
Simulated Results (p = 200)

Performance based on 100 independent simulations (t = 0)

method precision recall #f̂1 #f̂2 #f̂3 #f̂4 #f̂5 #f̂6 #f̂7 #f̂8 MSE

GroupSpAM 1.00 1.00 100 100 100 100 100 100 100 100 7.22

SpAM 0.85 0.82 83 100 56 100 100 94 27 100 9.61

COSSO 0.66 0.42 6 1 27 100 50 61 3 88 28.29

GroupLasso 0.95 0.99 100 100 100 100 99 99 99 99 28.34

Performance based on 100 independent simulations (t = 2)

method precision recall #f̂1 #f̂2 #f̂3 #f̂4 #f̂5 #f̂6 #f̂7 #f̂8 MSE

GroupSpAM 0.89 0.99 100 100 100 100 98 98 98 98 7.26

SpAM 0.71 0.46 88 75 0 83 100 0 4 15 8.48

COSSO 0.23 0.41 11 61 22 90 76 10 10 47 13.72

GroupLasso 0.13 0.12 14 14 14 14 11 11 11 11 26.19
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p = 200, t = 2 

Simulated Results (p = 1000)

Performance based on 100 independent simulations (t = 0)

method precision recall #f̂1 #f̂2 #f̂3 #f̂4 #f̂5 #f̂6 #f̂7 #f̂8 MSE

GroupSpAM 1.00 1.00 100 100 100 100 100 100 100 100 7.21

SpAM 0.86 0.68 49 91 25 100 100 71 7 97 11.66

COSSO 0.01 0.97 93 100 97 100 100 100 84 100 36.59

GroupLasso 0.93 0.97 98 98 98 98 97 97 97 97 29.49

Performance based on 100 independent simulations (t = 2)

method precision recall #f̂1 #f̂2 #f̂3 #f̂4 #f̂5 #f̂6 #f̂7 #f̂8 MSE

GroupSpAM 0.75 0.97 95 95 95 95 100 100 100 100 8.10

SpAM 0.69 0.34 59 43 0 65 100 0 1 3 9.69

COSSO 0.00 0.00 0 0 0 0 0 0 0 0 26.30

GroupLasso 0.02 0.03 4 4 4 4 2 2 2 2 25.86
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p = 1000, t = 2 

•  True component functions (red) versus estimated component functions (blue) 

Estimated Component Functions
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Breast Cancer Data (van de Vijver et al., 2002):  
•  Sample size n = 295 tumors (metastatic v.s. non-metastatic) 

and dimension p = 3,510 genes; reduce p to 300 top genes 
by sure independence screening (Fan & Lv, 2008). 

•  Goal: to find a sparse set of genes that can discriminate the 
two types of tumors. 

•  Genes in the same biological pathway are likely to perform 
the same functionality in the cell, hence more likely to be 
involved in the studied phenomenon in a group manner. 

•  Each group consists of the set of genes in a pathway and 
groups are overlapping. 

Breast Cancer Data

Sample size n = 295 tumors (metastatic v.s. non-metastatic) and
dimension p = 3510 genes.

Reduce p to 300 top genes by sure independence screening.

Each group consists of the set of genes in a pathway and groups
are overlapping.

Comparison by 3-fold cross validation.

fold method BER #genes #pathways

1
GroupSpAM 0.353 55 196
SpAM 0.362 91 266
GroupLasso 0.384 44 238

2
GroupSpAM 0.358 44 243
SpAM 0.349 109 302
GroupLasso 0.365 56 248

3
GroupSpAM 0.326 74 149
SpAM 0.333 101 209
GroupLasso 0.346 76 138
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BER: balanced error rate, the average of the errors 
in each tumor type. 


