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Abstract

In this paper, we argue for representing networks as a bag of triangular motifs,
particularly for important network problems that current model-based approaches
handle poorly due to computational bottlenecks incurred by using edge represen-
tations. Such approaches require both 1-edges and 0-edges (missing edges) to be
provided as input, and as a consequence, approximate inference algorithms for
these models usually require Ω(N2) time per iteration, precluding their applica-
tion to larger real-world networks. In contrast, triangular modeling requires less
computation, while providing equivalent or better inference quality. A triangular
motif is a vertex triple containing 2 or 3 edges, and the number of such motifs is
Θ(

∑
iD

2
i ) (where Di is the degree of vertex i), which is much smaller than N2

for low-maximum-degree networks. Using this representation, we develop a novel
mixed-membership network model and approximate inference algorithm suitable
for large networks with low max-degree. For networks with high maximum de-
gree, the triangular motifs can be naturally subsampled in a node-centric fashion,
allowing for much faster inference at a small cost in accuracy. Empirically, we
demonstrate that our approach, when compared to that of an edge-based model,
has faster runtime and improved accuracy for mixed-membership community de-
tection. We conclude with a large-scale demonstration on an N ≈ 280, 000-node
network, which is infeasible for network models with Ω(N2) inference cost.

1 Introduction
Network analysis methods such as MMSB [1], ERGMs [20], spectral clustering [17] and latent
feature models [12] require the adjacency matrix A of the network as input, reflecting the natu-
ral assumption that networks are best represented as a set of edges taking on the values 0 (absent)
or 1 (present). This assumption is intuitive, reasonable, and often necessary for some tasks, such
as link prediction, but it comes at a cost (which is not always necessary, as we will discuss later)
for other tasks, such as community detection in both the single-membership or admixture (mixed-
membership) settings. The fundamental difference between link prediction and community detec-
tion is that the first is concerned with link outcomes on pairs of vertices, for which providing links
as input is intuitive. However, the second task is about discovering the community memberships of
individual vertices, and links are in fact no longer the only sensible representation. By representing
the input network as a bag of triangular motifs — by which we mean vertex triples with 2 or 3
edges — one can design novel models for mixed-membership community detection that outperform
models based on the adjacency matrix representation.

The main advantage of the bag-of-triangles representation lies in its huge reduction of computa-
tional cost for certain network analysis problems, with little or no loss of outcome quality. In the
traditional edge representation, if N is the number of vertices, then the adjacency matrix has size
Θ(N2) — thus, any network analysis algorithm that touches every element must have Ω(N2) run-
time complexity. For probabilistic network models, this statement applies to the cost of approximate
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Figure 1: Four types of triangular motifs: (a) full-triangle; (b) 2-triangle; (c) 1-triangle; (d) empty-triangle.
For mixed-membership community detection, we only focus on full-triangles and 2-triangles.

inference. For example, the Mixed Membership Stochastic Blockmodel (MMSB) [1] has Θ(N2)
latent variables, implying an inference cost of Ω(N2) per iteration. Looking beyond, the popular p∗
or Exponential Random Graph models [20] are normally estimated via MCMC-MLE, which entails
drawing network samples (each of size Θ(N2)) from some importance distribution. Finally, latent
factor models such as [12] only have Θ(N) latent variables, but the Markov blanket of each variable
depends on Θ(N) observed variables, resulting in Ω(N2) computation per sweep over all variables.
With an inference cost of Ω(N2), even modestly large networks with only ∼ 10, 000 vertices are
infeasible, to say nothing of modern social networks with millions of vertices or more.

On the other hand, it can be shown that the number of 2- and 3-edge triangular motifs is upper-
bounded by Θ(

∑
iD

2
i ), whereDi is the degree of vertex i. For networks with low maximum degree,

this quantity is � N2, allowing us to construct more parsimonious models with faster inference
algorithms. Moreover, for networks with high maximum degree, one can subsample Θ(Nδ2) of
these triangular motifs in a node-centric fashion, where δ is a user-chosen parameter. Specifically,
we assign triangular motifs to nodes in a natural manner, and then subsample motifs only from nodes
with too many of them. In contrast, MMSB and latent factor models rely on distributions over 0/1-
edges (i.e. edge probabilities), and for real-world networks, these distributions cannot be preserved
with small (i.e. o(N2)) sample sizes because the 0-edges asymptotically outnumber the 1-edges.

As we will show, a triangular representation does not preserve all information found in an edge repre-
sentation. Nevertheless, we argue that one should represent complex data objects in a task-dependent
manner, especially since computational cost is becoming a bottleneck for real-world problems like
analyzing web-scale network data. The idea of transforming the input representation (e.g. from
network to bag-of-triangles) for better task-specific performance is not new. A classic example is
the bag-of-words representation of a document, in which the ordering of words is discarded. This
representation has proven effective in natural language processing tasks such as topic modeling [2],
even though it eliminates practically all grammatical information. Another example from computer
vision is the use of superpixels to represent images [3, 4]. By grouping adjacent pixels into larger
superpixels, one obtains a more compact image representation, in turn leading to faster and more
meaningful algorithms. When it comes to networks, triangular motifs (Figure 1) are already of
significant interest in biology [13], social science [19, 9, 10, 16], and data mining [21, 18, 8]. In
particular, 2- and 3-edge triangular motifs are central to the notion of transitivity in the social sci-
ences — if we observe edges A-B and B-C, does A have an edge to C as well? Transitivity is of
special importance, because high transitivity (i.e. we frequently observe the third edge A-C) intu-
itively leads to stronger clusters with more within-cluster edges. In fact, the ratio of 3-edge triangles
to connected vertex triples (i.e. 2- and 3-edge triangular motifs) is precisely the definition of the
network clustering coefficient [16], which is a popular measure of cluster strength.

In the following sections, we begin by characterizing the triangular motifs, following which we de-
velop a mixed-membership model and inference algorithm based on these motifs. Our model, which
we call MMTM or the Mixed-Membership Triangular Model, performs mixed-membership commu-
nity detection, assigning each vertex i to a mixture of communities. This allows for better outlier de-
tection and more informative visualization compared to single-membership modeling. In addition,
mixed-membership modeling has two key advantages: first, MM models such as MMSB, Latent
Dirichlet Allocation and our MMTM are easily modified for specialized tasks — as evidenced by
the rich literature on topic models [2, 1, 14, 5]. Second, MM models over disparate data types (text,
network, etc.) can be combined by fusing their latent spaces, resulting in a multi-view model — for
example, [14, 5] model both text and network data from the same mixed-membership vectors. Thus,
our MMTM can serve as a basic modeling component for massive real-world networks with copious
side information. After developing our model and inference algorithm, we present simulated exper-
iments comparing them on a variety of network types to an adjacency-matrix-based model (MMSB)
and its inference algorithm. These experiments will show that triangular mixed-membership mod-
eling results in both faster inference and more accurate mixed-membership recovery. We conclude
by demonstrating our model/algorithm on a network with N ≈ 280, 000 nodes and ∼ 2, 300, 000
edges, which is far too large for Ω(N2) inference algorithms such as variational MMSB [1] and the
Gibbs sampling MMSB inference algorithm we developed for our experiments.
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2 Triangular Motif Representation of a Network
In this work, we consider undirected networks over N vertices, such as social networks. Most of
the ideas presented here also generalize to directed networks, though the analysis is more involved
since directed networks can generate more motifs than undirected ones. To prevent confusion, we
shall use the term “1-edge” to refer to edges that exist between two vertices, and the term “0-
edge” to refer to missing edges. Now, define a triangular motif Eijk involving vertices i < j < k
to be the type of subgraph over these 3 vertices. There are 4 basic classes of triangular motifs
(Figure 1), distinguished by their number of 1-edges: full-triangle ∆3 (three 1-edges), 2-triangle ∆2

(two 1-edges), 1-triangle ∆1 (one 1-edge), and empty-triangle ∆0 (no 1-edges). The total number of
triangles, over all 4 classes, is Θ(N3). However, our goal is not to account for all 4 classes; instead,
we will focus on ∆3 and ∆2 while ignoring ∆1 and ∆0. We have three primary motivations for this:

1. In the network literature, the most commonly studied “network motifs” [13], defined as
patterns of significantly recurring inter-connections in complex networks, are the three-
node connected subgraphs (namely ∆3 and ∆2) [13, 19, 9, 10, 16].

2. Since the full-triangle and 2-triangle classes are regarded as the basic structural elements
of most networks [19, 13, 9, 10, 16], we naturally expect them to characterize most of the
community structure in networks (cf. network clustering coefficient, as explained in the
introduction). In particular, the ∆3 and ∆2 triangular motifs preserve almost all 1-edges
from the original network: every 1-edge appears in some triangular motif ∆2,∆3, except
for isolated 1-edges (i.e. connected components of size 2), which are less interesting from
a large-scale community detection perspective.

3. For real networks, which have far more 0- than 1-edges, focusing only on ∆3 and ∆2

greatly reduces the number of triangular motifs, via the following lemma:
Lemma 1. The total number of ∆3’s and ∆2’s is upper bounded by

∑
i

1
2 (Di)(Di − 1) =

Θ(
∑
iD

2
i ), where Di is the degree of vertex i.

Proof. Let Ni be the neighbor set of vertex i. For each vertex i, form the set Ti of tuples (i, j, k)
where j < k and j, k ∈ Ni, which represents the set of all pairs of neighbors of i. Because j and
k are neighbors of i, for every tuple (i, j, k) ∈ Ti, Eijk is either a ∆3 or a ∆2. It is easy to see
that each ∆2 is accounted for by exactly one Ti, where i is the center vertex of the ∆2, and that
each ∆3 is accounted for by three sets Ti, Tj and Tk, one for each vertex in the full-triangle. Thus,∑
i |Ti| =

∑
i

1
2 (Di)(Di − 1) is an upper bound of the total number of ∆3’s and ∆2’s.

For networks with low maximum degree D, Θ(
∑
iD

2
i ) = Θ(ND2) is typically much smaller than

Θ(N2), allowing triangular models to scale to larger networks than edge-based models. As for net-
works with high maximum degree, we suggest the following node-centric subsampling procedure,
which we call δ-subsampling: for each vertex i with degree Di > δ for some threshold δ, sample
1
2δ(δ−1) triangles without replacement and uniformly at random from Ti; intuitively, this is similar
to capping the network’s maximum degree at Ds = δ. A full-triangle ∆3 associated with vertices
i, j and k shall appear in the final subsample only if it has been subsampled from at least one of
Ti, Tj and Tk. To obtain the set of all subsampled triangles ∆2 and ∆3, we simply take the union of
subsampled triangles from each Ti, discarding those full-triangles duplicated in the subsamples.

Although this node-centric subsampling does not preserve all properties of a network, such as the
distribution of node degrees, it approximately preserves the local cluster properties of each vertex,
thus capturing most of the community structure in networks. Specifically, the “local” clustering
coefficient (LCC) of each vertex i, defined as the ratio of #(∆3) touching i to #(∆3,∆2) touching
i, is well-preserved. This follows from subsampling the ∆3 and ∆2’s at i uniformly at random,
though the LCC has a small upwards bias since each ∆3 may also be sampled by the other two
vertices j and k. Hence, we expect community detection based on the subsampled triangles to be
nearly as accurate as with the original set of triangles — which our experiments will show.

We note that other subsampling strategies [11, 22] preserve various network properties, such as
degree distribution, diameter, and inter-node random walk times. In our triangular model, the main
property of interest is the distribution over ∆3 and ∆2, analogous to how latent factor models and
MMSB model distributions over 0- and 1-edges. Thus, subsampling strategies that preserve ∆3/∆2

distributions (e.g. our δ-subsampling) would be appropriate for our model. In contrast, 0/1-edge
subsampling for MMSB and latent factor models is difficult: most networks have Θ(N2) 0-edges
but only o(N2) 1-edges, thus sampling o(N2) 0/1-edges leads to high variance in their distribution.
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3 Mixed-Membership Triangular Model
Given a network, now represented by triangular motifs ∆3 and ∆2, our goal is to perform community
detection for each network vertex i, in the same sense as what an MMSB model would enable. Under
an MMSB, each vertex i is assigned to a mixture over communities, as opposed to traditional single-
membership community detection, which assigns each vertex to exactly one community. By taking
a mixed-membership approach, one gains many benefits over single-membership models, such as
outlier detection, improved visualization, and better interpretability [2, 1].

Bxyz

si,jk

θi θj

sj,ik sk,ij

θk

α

Eijk λ

Figure 2: Graphical model representation
for MMTM, our mixed-membership model
over triangular motifs.

Following a design principle similar to the one underly-
ing the MMSB models, we now present a new mixed-
membership network model built on the more parsimo-
nious triangular representation. For each triplet of ver-
tices i, j, k ∈ {1, . . . , N} , i < j < k, if the subgraph on
i, j, k is a 2-triangle with i, j, or k at the center, then let
Eijk = 1, 2 or 3 respectively, and if the subgraph is a full-
triangle, then let Eijk = 4. Whenever i, j, k corresponds
to a 1- or an empty-triangle, we do not model Eijk. We
assume K latent communities, and that each vertex takes
a distribution (i.e. mixed-membership) over them. The
observed bag-of-triangles {Eijk} is generated according
to (1) the distribution over community-memberships at
each vertex, and (2) a tensor of triangle generation proba-
bilities, containing different triangle probabilities for dif-
ferent combinations of communities.

More specifically, each vertex i is associated with a community mixed-membership vector θi ∈
∆K−1 restricted to the (K − 1)-simplex ∆K−1. This mixed-membership vector θi is used to gen-
erate community indicators si,jk ∈ {1, . . . ,K}, each of which represents the community chosen
by vertex i when it is forming a triangle with vertices j and k. The probability of observing a tri-
angular motif Eijk depends on the community-triplet si,jk, sj,ik, sk,ij , and a tensor of multinomial
parameters B. Let x, y, z ∈ {1, . . . ,K} be the values of si,jk, sj,ik, sk,ij , and assume WLOG that
x < y < z1. Then, Bxyz ∈ ∆3 represents the probabilities of generating the 4 triangular motifs2

among vertices i, j and k. In detail, Bxyz,1 is the probability of the 2-triangle whose center vertex
has community x, and analogously for Bxyz,2 and community y, and for Bxyz,3 and community z;
Bxyz,4 is the probability of the full-triangle.

The MMTM generative model is summarized below; see Figure 2 for a graphical model illustration.
• Triangle tensor Bxyz ∼ Dirichlet (λ) for all x, y, z ∈ {1, . . . ,K}, where x < y < z
• Community mixed-membership vectors θi ∼ Dirichlet (α) for all i ∈ {1, . . . , N}
• For each triplet (i, j, k) where i < j < k,

– Community indices si,jk∼Discrete (θi), sj,ik∼Discrete (θj), sk,ij∼Discrete (θk).
– Generate the triangular motif Eijk based on Bxyz and the ordered values of
si,jk, sj,ik, sk,ij ; see Table 1 for the exact conditional probabilities. There are 6 entries
in Table 1, corresponding to the 6 possible orderings of si,jk, sj,ik, sk,ij .

4 Inference
We adopt a collapsed, blocked Gibbs sampling approach, where θ and B have been integrated out.
Thus, only the community indices s need to be sampled. For each triplet (i, j, k) where i < j < k,

P (si,jk, sj,ik, sk,ij | s−ijk,E, α, λ) ∝ P (Eijk|E−ijk, s, λ)P (si,jk | si,−jk, α)

P (sj,ik | sj,−ik, α)P (sk,ij | sk,−ij , α) ,

1The cases x = y = z, x = y < z and x < y = z require special treatment, due to ambiguity cased by
having identical communities. In the interest of keeping our discussion at a high level, we shall refer the reader
to the appendix for these cases.

2It is possible to generate a set of triangles that does not correspond to a network, e.g. a 2-triangle centered
on i for (i, j, k) followed by a 3-triangle for (j, k, `), which produces a mismatch on the edge (j, k). This is a
consequence of using a bag-of-triangles model, just as the bag-of-words model in Latent Dirichlet Allocation
can generate sets of words that do not correspond to grammatical sentences. In practice, this is not an issue for
either our model or LDA, as both models are used for mixed-membership recovery, rather than data simulation.

4



Order Conditional probability of Eijk ∈ {1, 2, 3, 4}
si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4])
si,jk < sk,ij < sj,ik Discrete([Bxyz,1, Bxyz,3, Bxyz,2, Bxyz,4])
sj,ik < si,jk < sk,ij Discrete([Bxyz,2, Bxyz,1, Bxyz,3, Bxyz,4])
sj,ik < sk,ij < si,jk Discrete([Bxyz,3, Bxyz,1, Bxyz,2, Bxyz,4])
sk,ij < si,jk < sj,ik Discrete([Bxyz,2, Bxyz,3, Bxyz,1, Bxyz,4])
sk,ij < sj,ik < si,jk Discrete([Bxyz,3, Bxyz,2, Bxyz,1, Bxyz,4])

Table 1: Conditional probabilities of Eijk given si,jk, sj,ik and sk,ij . We define x, y, z to be the ordered (i.e.
sorted) values of si,jk, sj,ik, sk,ij .

where s−ijk is the set of all community memberships except for si,jk, sj,ik, sk,ij , and si,−jk is the
set of all community memberships of vertex i except for si,jk. The last three terms are predictive
distributions of a multinomial-Dirichlet model, with the multinomial parameter θ marginalized out:

P (si,jk | si,−jk, α) =
# [si,−jk = si,jk] + α

# [si,−jk] +Kα
.

The first term is also a multinomial-Dirichlet predictive distribution (refer to appendix for details).

5 Comparing Mixed-Membership Network Models on Synthetic Networks
For a mixed-membership network model to be useful, it must recover some meaningful notion of
mixed community membership for each vertex. The precise definition of network community has
been a subject of much debate, and various notions of community [1, 15, 17, 12, 6] have been
proposed under different motivations. Our MMTM, too, conveys another notion of community
based on membership in full triangles ∆3 and 2-triangles ∆2, which are key aspects of network
clustering coefficients. In our simulations, we shall compare our MMTM against an adjacency-
matrix-based model (MMSB), in terms of how well they recover mixed-memberships from networks
generated under a range of assumptions. Note that some of these synthetic networks will not match
the generative assumptions of either our model or MMSB; this is intentional, as we want to compare
the performance of both models under model misspecification.

We shall also demonstrate that MMTM leads to faster inference, particularly when δ-subsampling
triangles (as described in Section 2). Intuitively, we expect the mixed-membership recovery of our
inference algorithm to depend on (a) the degree distribution of the network, and (b) the “degree
limit” δ used in subsampling the network; performance should increase as the number of vertices i
having degree Di ≤ δ goes up. In particular, our experiments will demonstrate that subsampling
yields good performance even when the network contains a few vertices with very large degree Di

(a characteristic of many real-world networks).

Synthetic networks We compared our MMTM to MMSB3 [1] on multiple synthetic networks,
evaluating them according to how well their inference algorithms recovered the vertex mixed-
membership vectors θi. Each network was generated from N = 4, 000 mixed-membership vectors
θi of dimensionality K = 5 (i.e. 5 possible communities), according to one of several models:

1. The Mixed Membership Stochastic Blockmodel [1], an admixture generalization of the
stochastic blockmodel. The probability of a link from i to j is θiBθj for some block matrix
B, and we convert all directed edges into undirected edges. In our experiments, we use a
B with on-diagonal elements Baa = 1/80, and off-diagonal elements Bab = 1/800. Our
values of B are lower than typically seen in the literature, because they are intended to
replicate the 1-edge density of real-world networks with size around N = 4, 000.

2. A simplex Latent position model, where the probability of a link between i, j is γ(1 −
1
2 ||θi − θj ||1) for some scaling parameter γ. In other words, the closer that θi and θj are,
the higher the link probability. Note that 0 ≤ ||θi − θj ||1 ≤ 2, because θi and θj lie in the
simplex. We choose γ = 1/40, again to reproduce the 1-edge density seen in real networks.

3. A “Biased” scale-free model that combines the preferred attachment model [7] with a
mixed-membership model. Specifically, we generatedM = 60, 000 1-edges as follows: (a)
pick a vertex i with probability proportional to its degree; (b) randomly pick a destination
community k from θi; (c) find the set Vk of all vertices v such that θvk is the largest
element of θv (i.e. the vertices that mostly belong to community k); (d) within Vk, pick
the destination vertex j with probability proportional to its degree. The resulting network

3MMSB is applicable to both directed and undirected networks; our experiments use the latter.
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#0,1-edges #1-edges max(Di) #∆3,∆2 δ = 20 δ = 15 δ = 10 δ = 5
MMSB 7,998,000 55,696 51 1,541,085 749,018 418,764 179,841 39,996
Latent position q 56,077 51 1,562,710 746,979 418,448 179,757 39,988
Biased scale-free q 60,000 231 3,176,927 497,737 304,866 144,206 35,470
Pure membership q 55,651 44 1,533,365 746,796 418,222 179,693 39,986

Table 2: Number of edges, maximum degree, and number of 3- and 2-edge triangles ∆3,∆2 for each N =
4, 000 synthetic network, as well as #triangles when subsampling at various degree thresholds δ. MMSB
inference is linear in #0,1-edges, while our MMTM’s inference is linear in #∆3,∆2.

exhibits both a block diagonal structure, as well as a power-law degree distribution. In
contrast, the other two models have binomial (i.e. Gaussian-like) degree distributions.

To use these models, we must input mixed-memberships θi. These were generated as follows:

1. Divide theN = 4, 000 vertices into 5 groups of size 800. Assign each group to a (different)
dominant community k ∈ {1, . . . , 5}.

2. Within each group:
(a) Pick 160 vertices to have mixed-membership in 3 communities: 0.8 in the dominant

community k, and 0.1 in two other randomly chosen communities.
(b) The remaining 640 vertices have mixed-membership in 2 communities: 0.8 in the

dominant community k, and 0.2 in one other randomly chosen community.

In other words, every vertex has a dominant community, and one or two other minor communities.
Using these θi’s, we generated one synthetic network for each of the three models described. In
addition, we generated a fourth “pure membership” network under the MMSB model, using pure
θi’s with full membership in the dominant community. This network represents the special case of
single-community membership. Statistics for all 4 networks can be found in Table 2.

Inference and Evaluation For our MMTM4, we used our collapsed, blocked Gibbs sampler for
inference. The hyperparameters were fixed at α, λ = 0.1 and K = 5, and we ran each experiment
for 2,000 iterations. For evaluation, we estimated all θi’s using the last sample, and scored the
estimates according to

∑
i ||θ̂i−θi||2, the sum of `2 distances of each estimate θ̂i from its true value

θi. These results were taken under the most favorable permutation for the θ̂i’s, in order to avoid the
permutation non-identifiability issue. We repeated every experiment 5 times.

To investigate the effect of δ-subsampling triangles (Section 2), we repeated every MMTM exper-
iment under four different values of δ: 20, 15, 10 and 5. The triangles were subsampled prior to
running the Gibbs sampler, and they remained fixed during inference.

With MMSB, we opted not to use the variational inference algorithm of [1], because we wanted our
experiments to be, as far as possible, a comparison of models rather than inference techniques. To
accomplish this, we derived a collapsed, blocked Gibbs sampler for the MMSB model, with added
Beta hyperparameters λ1, λ2 on each element of the block matrixB. The mixed-membership vectors
θi (πi in the original paper) and blockmatrixB were integrated out, and we Gibbs sampled each edge
(i, j)’s associated community indicators zi→j , zi←j in a block fashion. Hence, this MMSB sampler
uses the exact same techniques as our MMTM sampler, ensuring that we are comparing models
rather than inference strategies. Furthermore, its per-iteration runtime is still Θ(N2), equal to the
original MMSB variational algorithm. All experiments were conducted in exactly the same manner
as with MMTM, with the MMSB hyperparameters fixed at α, λ1, λ2 = 0.1 and K = 5.

Results Figure 3 plots the cumulative `2 error for each experiment, as well as the time taken per
trial. On all 4 networks, the full MMTM model performs better than MMSB — even on the MMSB-
generated network! MMTM also requires less runtime for all but the biased scale-free network,
which has a much larger maximum degree than the others (Table 2). Furthermore, δ-subsampling
is effective: MMTM with δ = 20 runs faster than full MMTM, and still outperforms MMSB while
approaching full MMTM in accuracy. The runtime benefit is most noticable on the biased scale-free
network, underscoring the need to subsample real-world networks with high maximum degree.

We hypothesize MMSB’s poorer performance on networks of this size (N = 4, 000) results from
having Θ(N2) latent variables, while noting that the literature has only considered smaller N <
1, 000 networks [1]. Compared to MMTM, having many latent variables not only increases runtime
per iteration, but also the number of iterations required for convergence, since the latent variable state
space grows exponentially with the number of latent variables. In support of this, we have observed

4As explained in Section 2, we first need to preprocess the network adjacency list into the ∆3,∆2 triangle
representation. The time required is linear in the number of ∆3,∆2 triangles, and is insignificant compared to
the actual cost of MMTM inference.
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Figure 3: Mixed-membership community recovery task: Cumulative `2 errors and runtime per trial for MMSB,
MMTM and MMTM with δ-subsampling, on N = 4, 000 synthetic networks.

that the MMSB sampler’s complete log-likelihood fluctuates greatly across all 2000 iterations; in
contrast, the MMTM sampler plateaus within 500 iterations, and remains stable.

Scalability Experiments Although the preceding N = 4, 000 experiments appear fairly small, in
actual fact, they are close to the feasible limit for adjacency-matrix-based models like MMSB. To
demonstrate this, we generated four networks with sizes N ∈ {1000, 4000, 10000, 40000} from the
MMSB generative model. The generative parameters for theN = 4, 000 network are identical to our
earlier experiment, while the parameters for the other three network sizes were adjusted to maintain
the same average degree5. We then ran the MMSB, MMTM, and MMTM with δ-subsampling
inference algorithms on all 4 networks, and plotted the average per-iteration runtime in Figure 4.

The figure clearly exposes the scalability differences between MMSB and MMTM. The δ-
subsampled MMTM experiments show linear runtime dependence on N , which is expected since
the number of subsampled triangles is O(Nδ2). The full MMTM experiment is also roughly linear
— though we caution that this is not necessarily true for all networks, particularly high maximum
degree ones such as scale-free networks. Conversely, MMSB shows a clear quadratic dependence on
N . In fact, we had to omit the MMSB N = 40, 000 experiment because the latent variables would
not fit in memory, and even if they did, the extrapolated runtime would have been unreasonably long.

6 A Larger Network Demonstration
The MMTM model with δ-subsampling scales to even larger networks than the ones we have been
discussing. To demonstrate this, we ran the MMTM Gibbs sampler with δ = 20 on the SNAP
Stanford Web Graph6, containing N = 281, 903 vertices (webpages), 2, 312, 497 1-edges, and ap-
proximately 4 billiion 2- and 3-edge triangles ∆3,∆2, which we reduced to 11, 353, 778 via δ = 20-
subsampling. Note that the vast majority of triangles are associated with exceptionally high-degree
vertices, which make up a small fraction of the network. By using δ-subsampling, we limited the
number of triangles that come from such vertices, thus making the network feasible for MMTM.
We ran the MMTM sampler with settings identical to our synthetic experiments: 2,000 sampling
iterations, hyperparameters fixed to α, λ = 0.1. The experiment took 74 hours, and we observed
log-likelihood convergence within 500 iterations.

The recovered mixed-membership vectors θi are visualized in Figure 5. A key challenge is that
the θi exist in the 4-simplex ∆4, which is difficult to visualize in two dimensions. To overcome
this, Figure 5 uses both position and color to communicate the values of θi. Every vertex i is
displayed as a circle ci, whose size is proportional to the network degree of i. The position of ci is
equal to a convex combination of the 5 pentagon corners’ (x, y) coordinates, where the coordinates
are weighted by the elements of θi. In particular, circles ci at the pentagon’s corners represent
single-membership θi’s, while circles on the lines connecting the corners represent θi’s with mixed-
membership in 2 communities. All other circles represent θi’s with mixed-membership in ≥ 3
communities. Furthermore, each circle ci’s color is also a θi-weighted convex combination, this
time of the RGB values of 5 colors: blue, green, red, cyan and purple. This use of color helps
distinguish between vertices with 2 versus 3 or more communities: for example, even though the
largest circle sits on the blue-red line (which initially suggets mixed-membership in 2 communities),
its dark green color actually comes from mixed-membership in 3 communities: green, red and cyan.

5Note that the maximum degree still increases with N , because MMSB has a binomial degree distribution.
6Available at http://snap.stanford.edu/data/web-Stanford.html
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Figure 5: N = 281, 903 Stanford web graph,
MMTM mixed-membership visualization.

Most high-degree vertices (large circles) are found at the pentagon’s corners, leading to the intuitive
conclusion that the five communities are centered on hub webpages with many links. Interestingly,
the highest-degree vertices are all mixed-membership, suggesting that these webpages (which are
mostly frontpages) lie on the boundaries between the communities. Finally, if we focus on the sets
of vertices near each corner, we see that the green and red sets have distinct degree (i.e. circle size)
distributions, suggesting that those communities may be functionally different from the other three.

7 Future Work and Conclusion
We have focused exclusively on triangular motifs because of their popularity in the literature, their
relationship to community structure through the network clustering coefficient, and the ability to
subsample them in a natural, node-centric fashion with minor impact on accuracy. However, the
bag-of-network-motifs idea extends beyond triangles — one could easily consider subgraphs over 4
or more vertices, as in [13]. As with triangular motifs, it is algorithmically infeasible to consider all
possible subgraphs; rather, we must focus our attention on a meaningful subset of them. Neverthe-
less, higher order motifs could be more suited for particular tasks, thus meriting their investigation.

In modeling terms, we have applied triangular motifs to a generative mixed-membership setting,
which is suitable for visualization but not necessarily for attribute prediction. Recent developments
in constrained learning of generative models [23, 24] have yielded significant improvements in pre-
dictive accuracy, and these techniques are also applicable to mixed-membership triangular modeling.
Also, given how well δ = 20-subsampling works for MMTM at N = 4, 000, the next step would be
investigating how to adaptively choose δ as N increases, in order to achieve good performance.

To summarize, we have introduced the bag-of-triangles representation as a parsimonius alternative to
the network adjacency matrix, and developed a model (MMTM) and inference algorithm for mixed-
membership community detection in networks. Compared to mixed-membership models that use
the adjacency matrix (exemplified by MMSB), our model features a much smaller latent variable
space, leading to faster inference and better performance at mixed-membership recovery. When
combined with triangle subsampling, our model and inference algorithm scale easily to networks
with 100,000s of vertices, which are completely infeasible for Θ(N2) adjacency-matrix-based mod-
els — the adjacency matrix might not even fit in memory, to say nothing of runtime.

As a final note, we speculate that the local nature of the triangles lends itself better to parallel infer-
ence than the adjacency matrix representation; it may be possible to find good “triangle separators”,
small subsets of triangles that divide the remaining triangles into large, non-vertex-overlapping sub-
sets, which can then be inferred in parallel. This is similar to classical 1-edge separators that di-
vide networks into non-overlapping subgraphs, which are unfortunately inapplicable to adjacency-
matrix-based models, as they require separators over both the 0- and 1-edges. With triangle separa-
tors, we expect triangle models to scale to networks with millions of vertices and more.
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