
Appendix
On Triangular versus Edge Representations — Towards Scalable

Modeling of Networks

A Full Mixed-Membership Triangular Model (MMTM)
In the main text, we presented the generative process of our model when the community index triplets are restricted to the
case of x < y < z, where x, y, z are the ordered values of the community indices si,jk, sj,ik, sk,ij belonging to a triangle
Eijk. Here, we shall address the remaining cases x = y = z, x = y < z, and x < y = z. Recall that the generative process
restricted to x < y < z is:

• Triangle tensor Bxyz ∼ Dirichlet (λ) for all x, y, z ∈ {1, . . . ,K}, where x < y < z

• Community admixture vectors θi ∼ Dirichlet (α) for all i ∈ {1, . . . , N}

• For each triplet (i, j, k) where i < j < k,

– Community indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

– Generate the triangular motif Eijk based on Bxyz ∈ ∆3 and how the values of si,jk, sj,ik, sk,ij happen to be
ordered; see Table 1 for the exact conditional probabilities. There are 6 entries in Table 1, corresponding to the 6
possible orderings of si,jk, sj,ik, sk,ij .

The difficulty with the cases x = y = z, x = y < z, and x < y = z stems from isomorphism in labeled graphs. To
understand why, we must take note of the following two points: first, in these 3 cases, some of the community indices are
equal and therefore indistinguishable. Second, the 2-triangles ∆2 are asymmetric: the center vertex is not equivalent to the
two peripheral vertices (though the peripheral vertices are equivalent to each other). In turn, these points imply that certain
2-triangles that would otherwise be distinct under x < y < z, become indistinguishable under x = y = z, x = y < z, or
x < y = z.
To illustrate, consider the 2-triangle whose center vertex has community index x. When x < y < z, the 2-triangle’s commu-
nity structure could look like either y − x − z, or the isomorphism z − x − y (since the peripheral vertices are symmetric).
This underscores an important point: we are really interested in generating the equivalence class {(y − x− z), (z − x− y)},
rather than a specific instance within this class. Notice that such isomorphisms on peripheral vertices are implicitly covered
by our triangular representation Eijk ∈ {1, 2, 3, 4}, because the 2-triangle cases 1, 2, 3 are defined only by their center ver-
tex. However, if we now suppose that x = y < z, then the equivalence class grows to {(y − x − z), (z − x − y), (x −
y − z), (z − y − x)}, i.e. we cannot distinguish the 2-triangle with x in the center from that with y in the center (because
x = y). If we go further and let x = y = z, then the equivalence class grows to encompass all 6 orderings of x, y, z, i.e.
{(y − x− z), (z − x− y), (x− y − z), (z − y − x), (x− z − y), (y − z − x)}.

Order Conditional probability of Eijk ∈ {1, 2, 3, 4}
si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4])
si,jk < sk,ij < sj,ik Discrete([Bxyz,1, Bxyz,3, Bxyz,2, Bxyz,4])
sj,ik < si,jk < sk,ij Discrete([Bxyz,2, Bxyz,1, Bxyz,3, Bxyz,4])
sj,ik < sk,ij < si,jk Discrete([Bxyz,3, Bxyz,1, Bxyz,2, Bxyz,4])
sk,ij < si,jk < sj,ik Discrete([Bxyz,2, Bxyz,3, Bxyz,1, Bxyz,4])
sk,ij < sj,ik < si,jk Discrete([Bxyz,3, Bxyz,2, Bxyz,1, Bxyz,4])

Table 1: Conditional probabilities of Eijk given si,jk, sj,ik and sk,ij . We define x, y, z to be the ordered (i.e. sorted) values
of si,jk, sj,ik, sk,ij . Note that this table applies only to cases where x < y < z.
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Figure 1: Graphical model representation for full MMTM, our admixture model over triangular motifs.

Our solution to the isomorphism problem is simple: we first draw a triangle equivalence class for i, j, k. This equivalence
class is denoted by Cijk, which is a subset of {1, 2, 3, 4}. That is to say, Cijk is a set containing the values of Eijk that fall in
the equivalence class. Then, we draw a specific triangular motif Eijk uniformly at random from the equivalence class Cijk.
The 4 cases are as follows:

1. When x < y < z, there are 4 equivalence classes, so we haveBxyz ∈ ∆3, i.e. the 3-simplex. Here,Bxyz,1, Bxyz,2, Bxyz,3
represent the 2-triangle probabilities (for triangles centered on x, y, z respectively), and Bxyz,4 represents the full-
triangle probability.

2. When x = y < z, it turns out there are only 3 equivalence classes, so Bxyz ∈ ∆2. Now, Bxyz,1, Bxyz,2 represent
the 2-triangle probabilities (for triangles centered on x = y and z respectively), and Bxyz,3 represents the full-triangle
probability.

3. The case x < y = z is almost identical to x = y < z. The only difference is that Bxyz,1 represents the 2-triangle
probability for triangles centered on x, and Bxyz,2 represents the 2-triangle probability for triangles centered on y = z.

4. Finally, when x = y = z, there are only 2 equivalence classes, and Bxyz ∈ ∆1. Here, Bxyz,1 represents the proba-
bility of generating a 2-triangle (regardless of the center vertex’s community), and Bxyz,2 represents the full-triangle
probability.

With the structure of Bxyz in mind, our full generative model over triangular motifs is as follows; see Figure 1 for a graphical
model representation.

• Triangle tensor elements Bxyz , where x, y, z ∈ {1, . . . ,K} and x ≤ y ≤ z. All the Dirichlet distributions are
symmetric, so we only need one scalar parameter λ.

– When x < y < z, draw Bxyz ∈ ∆3 according to Bxyz ∼ Dirichlet (λ)

– When x = y < z, draw Bxyz ∈ ∆2 according to Bxyz ∼ Dirichlet (λ)

– When x < y = z, draw Bxyz ∈ ∆2 according to Bxyz ∼ Dirichlet (λ)

– When x = y = z, draw Bxyz ∈ ∆1 according to Bxyz ∼ Dirichlet (λ) (equivalent to Beta(λ, λ))

• Community admixture vectors θi ∼ Dirichlet (α) for all i ∈ {1, . . . , N}

• For each triplet (i, j, k) where i < j < k,

– Community indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

– Generate the triangle equivalence class Cijk based on Bxyz and how the values of si,jk, sj,ik, sk,ij happen to be
ordered; see Table 2 for the exact conditional probabilities. There are 13 entries in Table 2.

– Generate the triangular motifEijk ∈ Cijk: drawEijk uniformly at random from the set of elements inCijk. In the
case where all three community indices si,jk, sj,ik, sk,ij are distinct, each equivalence class Cijk is a singleton,
and the corresponding generative process is consistent with the description in the main text.
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Order Conditional probability distribution over classes Cijk Possible classes Cijk (each being a set of Eijk values)

si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4]) {1}, {2}, {3}, {4}
si,jk < sk,ij < sj,ik || {1}, {3}, {2}, {4}
sj,ik < si,jk < sk,ij || {2}, {1}, {3}, {4}
sj,ik < sk,ij < si,jk || {2}, {3}, {1}, {4}
sk,ij < si,jk < sj,ik || {3}, {1}, {2}, {4}
sk,ij < sj,ik < si,jk || {3}, {2}, {1}, {4}
si,jk = sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3]) {1, 2}, {3}, {4}
si,jk = sk,ij < sj,ik || {1, 3}, {2}, {4}
sj,ik = sk,ij < si,jk || {2, 3}, {1}, {4}
si,jk < sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3]) {1}, {2, 3}, {4}
sj,ik < si,jk = sk,ij || {2}, {1, 3}, {4}
sk,ij < si,jk = sj,ik || {3}, {1, 2}, {4}
si,jk = sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2]) {1, 2, 3}, {4}

Table 2: Full table of conditional probabilities of Cijk given si,jk, sj,ik and sk,ij . We define x, y, z to be the ordered (i.e.
sorted) values of si,jk, sj,ik, sk,ij . This table is structured differently from Table 1: within each row, for each element of
the discrete distribution (which is the probability for some equivalence class Cijk), we give the value of the corresponding
equivalence class Cijk (which is a set of elements Eijk ∈ {1, 2, 3, 4}). For example, suppose that si,jk = sj,ik < sk,ij and
we draw the first element of the discrete distribution (with probability Bxyz,1), then Cijk = {1, 2}, i.e. the equivalence class
of triangles centered on vertex i (Eijk = 1) or j (Eijk = 2).

B Modeling Community Assumptions via the Conditional Probability Distribu-
tions of Cijk

The MMTM, as just described, does not assume communities should have mostly ∆3 motifs (full triangles) rather than ∆2 (2-
edge triangles). In other words, it does not assume that communities are characterized by a high clustering coefficient. Because
this assumption is common in network analysis, we show how to modify the MMTM to better match this assumption. Note
that all MMTM experiments in the main text make use of this high CC modification.
Our approach to incorporating the high CC assumption is simple: we just modify the distributions Cijk | si,jk, sj,ik, sk,ij , B
(the distribution of triangular equivalence classes given community assignments). The basic idea is to prevent 2-edge triangles
∆2 from receiving community assignments of the form a − b − a, where the peripheral nodes have the same community a,
but the middle node has a different community b. These assignments are undesirable as they put nodes that do not share edges
into the same community; by preventing these assignments from occuring, we force the model to choose other assignments
such as a − a − b or a − b − c that do not contradict the high clustering coefficient assumption. To implement this idea,
we set the generative probability of certain equivalence classes Cijk to zero, which in turn causes the undesirable values of
si,jk, sj,ik, sk,ij to have zero posterior probability. Refer to Table 3 for a full explanation.
In general, the Cijk | si,jk, sj,ik, sk,ij , B table can be modified to suit other kinds of community assumptions. Importantly,
we are not restricted to merely preventing specific classes Cijk from being generated, rather, we are free to place any discrete
distribution over the possible Cijk’s. For the aforementioned high CC assumption, we simply used distributions that gave
certain classes Cijk zero probability.

C Gibbs Sampler Inference Equations
We adopt a collapsed, blocked Gibbs sampling approach, where θ,B and C have been integrated out. Thus, only the commu-
nity indices s need to be sampled. For each triplet (i, j, k) where i < j < k,

P (si,jk, sj,ik, sk,ij | s−ijk,E, α, λ) ∝ P (Eijk|E−ijk, s, λ)P (si,jk | si,−jk, α)P (sj,ik | sj,−ik, α)P (sk,ij | sk,−ij , α) ,

where s−ijk is the set of all community memberships except for si,jk, sj,ik, sk,ij , and si,−jk is the set of all community
memberships of vertex i except for si,jk. The last three terms are predictive distributions of a multinomial-Dirichlet model,

3



Order Conditional probability distribution over classes Cijk Possible classes Cijk (each being a set of Eijk values)

si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4]) {1}, {2}, {3}, {4}
si,jk < sk,ij < sj,ik || {1}, {3}, {2}, {4}
sj,ik < si,jk < sk,ij || {2}, {1}, {3}, {4}
sj,ik < sk,ij < si,jk || {2}, {3}, {1}, {4}
sk,ij < si,jk < sj,ik || {3}, {1}, {2}, {4}
sk,ij < sj,ik < si,jk || {3}, {2}, {1}, {4}
si,jk = sj,ik < sk,ij NormalizedDiscrete([Bxyz,1, 0, Bxyz,3]) {1, 2}, {3}, {4}
si,jk = sk,ij < sj,ik || {1, 3}, {2}, {4}
sj,ik = sk,ij < si,jk || {2, 3}, {1}, {4}
si,jk < sj,ik = sk,ij NormalizedDiscrete([0, Bxyz,2, Bxyz,3]) {1}, {2, 3}, {4}
sj,ik < si,jk = sk,ij || {2}, {1, 3}, {4}
sk,ij < si,jk = sj,ik || {3}, {1, 2}, {4}
si,jk = sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2]) {1, 2, 3}, {4}

Table 3: Modified table of conditional probabilities of Cijk, incorporating the assumption that communities should have a
high clustering coefficient (“high CC” MMTM). Specifically, we set the probability of generating particular values of Cijk
to zero whenever exactly two of si,jk, sj,ik, sk,ij are equal. Refer to the second column of the table for full details; any
differences with the “regular” MMTM in Table 2 are highlighted in red. In particular, “NormalizedDiscrete” refers to a
discrete distribution that first normalizes its parameters to sum to 1. These changes ensure that the posterior distribution
over si,jk, sj,ik, sk,ij has zero probability mass on “bad” community assignments that do not favor a high within-community
clustering coefficient, for example a− b− a on 2-edge motifs ∆2.

with the multinomial parameter θ marginalized out:

P (si,jk | si,−jk, α) =
# [si,−jk = si,jk] + α

# [si,−jk] +Kα
.

The first term P (Eijk|E−ijk, s, λ) is another multinomial-Dirichlet predictive distribution, and its exact form depends on how
the values of si,jk, sj,ik, sk,ij happen to be ordered, as well as whether we are using the “regular” MMTM (Table 2) or the
“high clustering coefficient” MMTM (Table 3). All experiments in the main text were performed with the “high CC” MMTM.

C.1 Regular MMTM
Letting x, y, z be the ordered values of si,jk, sj,ik, sk,ij ,

1. When x < y < z,

P (Eijk|E−ijk, s, λ) =
Q1f1 +Q2f2 +Q3f3 +Q4f4 + λ

Q1 +Q2 +Q3 +Q4 + 4λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community x]

Q2 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community y]

Q3 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community z]
Q4 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has community x]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has community y]

f3 = I[Eijk ∈ {1, 2, 3} and its center node has community z]
f4 = I[Eijk = 4]
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2. When x = y < z,

P (Eijk|E−ijk, s, λ) =
1
2 (Q1 + λ)f1 + (Q2 + λ)f2 + (Q3 + λ)f3

Q1 +Q2 +Q3 + 3λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community x or y]

Q2 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community z]
Q3 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has community x or y]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has community z]
f3 = I[Eijk = 4]

3. When x < y = z,

P (Eijk|E−ijk, s, λ) =
(Q1 + λ)f1 + 1

2 (Q2 + λ)f2 + (Q3 + λ)f3

Q1 +Q2 +Q3 + 3λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community x]

Q2 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community y or z]
Q3 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has community x]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has community y or z]
f3 = I[Eijk = 4]

4. When x = y = z,

P (Eijk|E−ijk, s, λ) =
1
3 (Q1 + λ)f1 + (Q2 + λ)f2

Q1 +Q2 + 2λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z]
Q2 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3}]
f2 = I[Eijk = 4]
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C.2 High Clustering Coefficient MMTM
Letting x, y, z be the ordered values of si,jk, sj,ik, sk,ij ,

1. Same as “regular” MMTM.

2. When x = y < z,

P (Eijk|E−ijk, s, λ) =

{
1
2 (Q1+λ)f1+(Q3+λ)f3

Q1+Q3+2λ if Eijk = 4 or Eijk ∈ {1, 2, 3} and its center node has community x or y
0 otherwise (i.e. Eijk ∈ {1, 2, 3} and its center node has community z)

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community x or y]

Q3 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has community x or y]

f3 = I[Eijk = 4]

3. When x < y = z,

P (Eijk|E−ijk, s, λ) =

{
1
2 (Q2+λ)f2+(Q3+λ)f3

Q2+Q3+2λ if Eijk = 4 or Eijk ∈ {1, 2, 3} and its center node has community y or z
0 otherwise (i.e. Eijk ∈ {1, 2, 3} and its center node has community x)

where

Q2 = # [E−ijk ∈ {1, 2, 3} with node communities x, y, z and center node having community y or z]
Q3 = # [E−ijk = 4 with node communities x, y, z]

and

f2 = I[Eijk ∈ {1, 2, 3} and its center node has community y or z]
f3 = I[Eijk = 4]

4. Same as “regular” MMTM.
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