
Petuum: A Framework for Iterative-Convergent
Distributed ML

Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim
Seunghak Lee, Junming Yin, Qirong Ho and Eric P. Xing

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
wdai,jinlianw,xunzheng,jinkyuk,seunghak,junmingy,

qho,epxing@cs.cmu.edu

Abstract

A major bottleneck to applying advanced ML programs at industrial scales is the
migration of an academic implementation, often specialized for a small, well-
controlled computer platform such as desktop PCs and small lab-clusters, to a
big, less predicable platform such as a corporate cluster or the cloud. This poses
enormous challenges: how does one train huge models with billions of parame-
ters on massive data, especially when substantial expertise is required to handle
many low-level systems issues? We propose a new architecture of systems com-
ponents that systematically addresses these challenges, thus providing a general-
purpose distributed platform for Big Machine Learning. Our architecture specif-
ically exploits the fact that many ML programs are fundamentally loss function
minimization problems, and that their iterative-convergent nature presents many
unique opportunities to minimize loss, such as via dynamic variable scheduling
and error-bounded consistency models for synchronization. Thus, we treat data,
parameter and variable blocks as computing units to be dynamically scheduled
and updated in an error-bounded manner, with the goal of minimizing the loss
function as quickly as possible.

1 Introduction
Machine learning is becoming the primary mechanism by which information is extracted from Big
Data, and which artificial intelligence is built upon. However, despite the rapid and voluminous
emergence in recent years of new models, algorithms [6, 18, 11, 21, 1, 4] and execution frame-
works [7, 14, 13, 12, 2, 3, 20, 15] across a wide spectrum of applications, successful and effective
adoption of ML technology based on truly advanced and large-scale probabilistic or optimization
programs — i.e., programs that involve billions of variables, with massive amount of relational or
sparsity constraints, processing petabyte-scale datasets, and operating perpetually and autonomously
on large computer clusters or in the cloud — remain largely unseen. Most existing large-scale ap-
plications still seem to rely on classical approaches such as kNN and decision trees, which im-
pose modest challenges on model and algorithm design, while scalable computational support for
such methods can be straightforwardly handled by existing representation, programming, and hard-
ware technology. Thus it is tempting to ask, where have all the latest exciting developments in
ML research – such as nonparametric Bayesian models, advanced subspace models beyond topic
models, multitask and nonlinear high-dimensional inference theory, and consistent graph learning
algorithms, to name a few – gone to in the broader application domains? We conjecture that, from
the scalable execution point of view, what prevents many state-of-the-art ML models and algorithms
from being more widely adopted is the lack of satisfactory answers to the following needs: 1) a
turnkey inference engine; 2) ways to scale on data; 3) ways to scale on model size; and 4) abstrac-

1

tion of hardware/system configuration. Our goal is to develop a distributed Big ML framework that
aims at providing a generic yet effective interface to a broad spectrum of ML programs.

Our design philosophy is rooted in iterative-convergent solutions to loss function minimization. A
great number of ML algorithms are formulated in this manner, which involves repeatedly executing
update equations that decrease some error function. Examples of such algorithms include variational
methods for graphical models [11], proximal optimization for structured sparsity problems [5], back-
propagation on deep neural networks [6], MCMC for determining point estimates in latent variable
models [8], among many others. Thus, the core goal of our framework is to execute these iterative
updates in a manner that most quickly minimizes the loss function in a large-scale distributed envi-
ronment. We do so by employing statistical insights such as error-bounded consistency schemes to
decrease network communication, and rescheduling of updates to decrease correlation effects and
optimizing load-balancing, which are executed by systems components such as a parameter server
for global parameter synchronization and a dynamic scheduler to organize and distribute worker
tasks. In summary, our system views the iterative-convergent nature of ML as the prime opportunity
to be exploited in realizing scalable execution of generic Big ML problems.

2 System Components
We have develop a prototypic framework for Big ML called Petuum, which comprises several inter-
related components, each focused on exploiting various specific properties of iterative-convergent
behavior in ML. The components can be used individually, or combined to handle tasks that require
their collective capabilities. In this workshop, we focus on two components:

• Parameter Server for global parameters: Our parameter server (Petuum-PS) is a distributed key-value
store that enables an easy-to-use, distributed-shared-memory model for writing distributed ML programs
over BIG DATA. Petuum-PS supports novel consistency models such as bounded staleness, which achieve
provably good results on iterative-convergent ML algorithms [9]. Petuum-PS additionally offers several
“tuning knobs” available to experts but otherwise hidden from regular users such as thread and process-
level caching and read-my-write consistency. We also support out-of-core data streaming for datasets that
are too large to fit in machine memory.

• Variable Scheduler for local variables: Our scheduler (STRADS) analyzes the variable structure of ML
problems, in order to find parallelization opportunities over BIG MODEL while avoiding error due to
strong dependencies. STRADS then dispatches parallel variable updates across a distributed cluster, while
prioritizing them for maximum objective function progress. Throughout this, STRADS maintains load
balance by dispatching new variable updates as soon as worker machines finish existing ones.

2.1 Parameter Server

Client 1

Server 1 Server 2 Server q...

Client 2 ... Client p...Client 3

Name-node

Figure 1: Petuum parameter server
topology. Servers and clients interact
via a bipartite topology, while a name-
node machine handles bookkeeping and
assignment of keys to servers.

Big Machine Learning is challenging because the global
model parameters can be massive in size (billions to tril-
lions), while the use of terabyte-scale Big Data places
high algorithmic complexity demands on inference. Such
memory and computational needs necessitate the use of
many machines, thus we develop a general-purpose pa-
rameter server (PS) for iterative-convergent ML program-
ming called Petuum-PS. Petuum-PS is a distributed key-
value store that provides client machines shared-memory
access to global parameters sharded on the server ma-
chines. Unlike conventional key-value stores that offer
consistency models such as the eventual consistency and
the strong consistency, Petuum-PS features a continuum
of bounded-staleness consistency guarantees across all
clients, which has been shown to achieve provably good
results on iterative-convergent ML programs while largely reducing communication overhead [9].

Petuum-PS offers a table-based user interface: users create global tables in which each entry of
the table can be accessed globally by a row-column ID pair, providing a general-purpose, easy-
to-program interface [16]. Because the parameter server abstracts away the communication and
synchronization, the distributed global table appears to be local to the user program executed on the
client machines (distributed shared memory). This allows Petuum-PS to retro-fit eixisting single-
machine parallel implementations with minimal modification. In the following sections we highlight

2

several tunable system features: bounded consistency, thread and process-level caching, and the use
of out-of-core (disk-based) storage.

2.1.1 Bounded Consistency
For Big Data+Model tasks, many variable blocks must access just as many parameter and data
blocks, all spread over 100s -1000s of machines. To reduce network costs and eliminate global
barriers/locking, we exploit the error-resistant iterative-convergence nature of ML programs — in
other words, their robustness against minor inconsistency in their model state. Petuum-PS pro-
vides theoretically-guaranteed consistency schemes that reduce inter-machine synchronization and
network communication, such as:

• Stale Synchronous Parallel (SSP) Consistency: SSP is based on the concept of iteration-bounded stale-
ness: using parameters from a few iterations ago still preserves convergence guarantees [9]. Our PS exploit
this by serving locally-cached versions of parameter blocks that are ≤ s iterations old, thus eliminating
network traffic. Extensions to the SSP model include heterogenous staleness, in which different parameter
blocks are read with different staleness, and adaptive staleness, in which the staleness values are automati-
cally tuned for different phases of the ML algorithm.

• Value-Bounded Consistency: In value-bounded consistency, clients and servers are synchronized only
when their parameter versions deviate by more than some threshold δ. For global parameter blocks that
change infrequently, this strategy requires even less network synchronization than iteration-bounded stale-
ness. Our proposed system will dynamically adjust δ to minimize user intervention.

2.1.2 Process-Level and Thread-Level Caching
Each PS client stores commonly used rows in local memory (process-level “caches”) to reduce
synchronization and network costs. To reduce the lock-contention between threads on process-
level cache, every worker thread on a client machine has its own thread “cache”, which is memory
exclusive to the thread. A frequently accessed row in table could potentially be cached at both the
process-level and thread-level cache. In order to keep memory usage at a reasonable level, intelligent
caching and eviction strategies are necessary. Our system offers multiple strategies such as Least-
Recently Used (LRU), Two-List LRU, and Priority LRU, in order to handle different scenarios.

Petuum-PS allows user to specify the number of rows to cache at each cache level, which controls the
memory footprint on the client machine. These parameters provide interesting performance trade-
offs: increasing the thread-level cache size provides faster data access but data in thread cache,
duplicated for each thread, could crowd out the process-level cache storage. Petuum-PS provides
reasonable default values but we expect expert users have much to gain by experimenting with these
parameters.

2.1.3 Out-of-Core Storage Support
In many cases, running ML algorithms on Big Data requires a cost-prohibitive amount of memory
(e.g., 109 ∼ 1010 documents in topic model). By discovering sequential access patterns in the
algorithm (e.g. sequential read of documents), we can utilize the out-of-core (disk-based) storage by
efficiently streaming data from hard disks or SSDs. Petuum-PS uses queue-based read-buffer and
write-buffer to perform asynchronous disk I/O and hide latency. One can thus iterate over a large
dataset with a small sliding window that fits in memory. While such out-of-core execution may
result in speed penalty, it nonetheless enables ML algorithms on otherwise-intractable datasets.

2.2 STRADS Scheduler

PS
Client 1

PS
Client 2

PS
Client p...

PS
Client 3

 STRADS Scheduler
● Variable Correlations
● Dynamic Prioritization
● Load-Balancing in Task

Distributions

Task Task Task Task

Figure 2: STRADS architec-
ture. The worker machines can
be Petuum-PS clients (as shown
in the diagram) or nodes without
PS support.

Big Models contain millions (e.g., whole-genome regression), if
not billions (e.g., Google brain DeepNet) of parameters, which re-
quire clusters with 100s - 10,000s of processors running inference
algorithms in parallel. Examples of big models include ultra-high
dimensional regression, DNN, and complex latent space models,
which allow for rich data analysis far beyond simple classification
or clustering. The complexity of these models raises two major is-
sues: 1) a strategy is needed to divide and exploit model structure,
in a way that ensures iterative-convergent consistency and statisti-
cal guarantees; 2) different model variables may have non-uniform
importance to overall convergence, which must be taken into account. We develop a structure-
aware dynamic scheduler (STRADS) to address these issues in distributed inference/learning on
large models.

3

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08

0 500 1000 1500 2000
Lo

g-
Li

ke
lih

o
o

d

Seconds

Objective function versus time
LDA 32 machines (256 threads), 10% data per iter

BSP (stale 0)

stale 32

async
4.20E-01

4.30E-01

4.40E-01

4.50E-01

4.60E-01

4.70E-01

4.80E-01

0 500 1000 1500 2000 2500 3000 3500 4000

O
b

je
ct

iv
e

Seconds

Objective function versus time
Lasso 16 machines (128 threads)

BSP (stale 0)

stale 10

stale 20

stale 40

stale 80

0 2 4

x 10
4

0

0.05

0.1
P = 32

O
bj

ec
tiv

e
va

lu
e

STRADS
Shotgun
BCD

0 2 4

x 10
4

0

0.05

0.1
P = 64

0 2 4

x 10
4

0

0.05

0.1
P = 128

0 2 4

x 10
4

0

5

10

15

of iterations

of

 N
on

−
ze

ro
s

(×
 1

03)

0 2 4

x 10
4

0

5

10

15

of iterations
0 2 4

x 10
4

0

5

10

15

of iterations

BCD divergedBCD diverged

Figure 3: Left, Center: Parameter server performance under SSP consistency, versus BSP and
asynchronous consistency, on LDA (NYtimes dataset, 256 cores) and Lasso regression (synthetic
data, 128 cores). Both graphs plot the objective function versus time (higher is better for LDA,
lower is better for Lasso). Right: STRADS scheduler performance on Lasso regression, versus the
Shotgun and BCD algorithms (for 32, 64 and 128 cores). The top row compares objective value
versus iteration number (lower is better), while the bottom row compares solution quality, in terms
of sparsity (lower is better).

2.2.1 Dynamic Scheduling and Adaptive Load Balancing
For distributed model variables updates to be efficient, a scheduler is needed to partition the vari-
ables in a manner that minimizes parallelization error. Our STRADS scheduler accounts for the
relationships between variables and the relative importance of each variable to the objective func-
tion; thus, STRADS can dynamically prioritize the most important variables for distributed updates,
while minimizing parallelization error due to intereference between variables. In this manner, we
use information about the ML problem to guarantee convergence at the fastest possible rate. As
an example, the Lasso parallel coordinate descent algorithm is known to converge slowly when
highly correlated variables are updated simultaneously [4]. STRADS avoids scheduling correlated
variables together, thus minimizing any loss in convergence rate.

The updates on model variables may also change in computational complexity as the ML algorithm
progresses, leading to uneven network and CPU workloads. STRADS actively monitors the contri-
bution of each variable update to the objective function, and weighs it against the actual time taken
for the update. It then uses this information to re-prioritize variables as the algorithm progresses,
thus shifting computation to parts of the model that can benefit more. For example, in a structured-
input-output regression algorithm, each worker will estimate new coefficients for every input and
output group, via an expensive proximal operator. However, for groups with all-zeros, a cheap
thresholding operator can be used instead, and furthermore, the emergence of such groups can be
predicted a few iterations in advance. STRADS uses such knowledge of computational requirements
to schedule jobs in a load-balanced manner.

3 Preliminary Results and Proposed Demonstration
We have published results for parameter server performance under the SSP consistency model for
a variety of algorithms (LDA, MF, Lasso) [9], and we have preliminary results for the STRADS
scheduler on Lasso regression, versus the Shotgun [4] and Blocked Coordinate Descent (BCD) [17]
algorithms. Some of the highlights can be found in Figure 3. During the workshop, we plan to demo
both Petuum-PS and STRADS running on large-scale ML applications, such as:

• Network role analysis on 100-million node networks, using the Mixed Membership Triangular Model
(MMTM) [10, 19].

• Lasso regression on ultra-high dimensional genomic data, with ≥10-million dimensions.

• Latent Dirichlet Allocation on millions of documents, using 10,000s of topics.

• Matrix Factorization on matrices with ≥100-million nonzero entries.

References

[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on, pages 5451–5452. IEEE, 2012.

4

[2] Apache. Apache mahout: Scalable machine learning and data mining. http://mahout.apache.
org/, October 2013.

[3] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica. Hyracks: A flexible
and extensible foundation for data-intensive computing. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 1151–1162. IEEE, 2011.

[4] Joseph K Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent for
l1-regularized loss minimization. ICML, 2011.

[5] Xi Chen, Qihang Lin, Seyoung Kim, Jaime Carbonell, and Eric Xing. Smoothing proximal gradient
method for general structured sparse learning. In Proceedings of Uncertainty in Artificial Intelligence
(UAI), 2011.

[6] J Dean, G Corrado, R Monga, K Chen, M Devin, Q Le, M Mao, M Ranzato, A Senior, P Tucker, K Yang,
and A Ng. Large scale distributed deep networks. In NIPS 2012, 2012.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communi-
cations of the ACM, 51(1):107–113, 2008.

[8] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the National Academy
of Sciences of the United States of America, 101(Suppl 1):5228–5235, 2004.

[9] Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ml via a stale synchronous parallel parameter server. In Advances in Neural
Information Processing Systems 26, 2013.

[10] Qirong Ho, Junming Yin, and Eric Xing. On triangular versus edge representations—towards scalable
modeling of networks. In Advances in Neural Information Processing Systems 25, pages 2141–2149,
2012.

[11] Matt Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. arXiv
preprint arXiv:1206.7051, 2012.

[12] Tim Kraska, Ameet Talwalkar, John Duchi, Rean Griffith, Michael J Franklin, and Michael Jordan. Ml-
base: A distributed machine-learning system. In In Conference on Innovative Data Systems Research,
2013.

[13] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. PVLDB,
2012.

[14] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 135–146. ACM, 2010.

[15] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS, 2011.

[16] Russell Power and Jinyang Li. Piccolo: building fast, distributed programs with partitioned tables. In
Proceedings of the 9th USENIX conference on Operating systems design and implementation, pages 1–
14. USENIX Association, 2010.

[17] Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Feature clustering for accel-
erating parallel coordinate descent. NIPS, 2012.

[18] Sinead A. Williamson, Avinava Dubey, and Eric P. Xing. Parallel markov chain monte carlo for nonpara-
metric mixture models. In International Conference on Machine Learning, 2013.

[19] Junming Yin, Qirong Ho, and Eric P Xing. A scalable approach to probabilistic latent space inference of
large-scale networks. Advances in neural information processing systems, 2013.

[20] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, 2010.

[21] Martin Zinkevich, John Langford, and Alex J Smola. Slow learners are fast. In Advances in Neural
Information Processing Systems, pages 2331–2339, 2009.

5

http://mahout.apache.org/
http://mahout.apache.org/

	Introduction
	System Components
	Parameter Server
	Bounded Consistency
	Process-Level and Thread-Level Caching
	Out-of-Core Storage Support

	STRADS Scheduler
	Dynamic Scheduling and Adaptive Load Balancing

	Preliminary Results and Proposed Demonstration

