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Overview

Most of previous GWAS have considered only genome-phenome associations.

However, in the increasingly common scenario where expression, phenotype,
and genomic data are available from the same cohort, it is important to in-
tegrate the expression data directly into the primary analysis. It has the

potential to
=« reveal the functional relationships between associated genomic variations

and physical phenotypes, via intermediate phenotypes.

« elucidate the biological mechanism behind the genome-phenome
associations and uncover potential pathways to target for treatment of
diseases.

We present

« a novel structured association mapping strategy for finding three-way
assoclations.

= a visual analytics software GenAMap (http://sailing.cs.cmu.edu/genamap)
that automates structured association mapping algorithms and provides
visualizations to explore the complex results.

Structured Association Mapping

Association mapping by exploiting the rich structures in the transcriptome
and phenome, e.g., gene-expression network, trait network.
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Genome-transcriptome associations by graph-guided fused lasso (GFlasso):
encourage highly correlated genes (connected by an edge in the gene network)
to be associated with the same set of SNPs.
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Transcriptome-phenome associations by graph-graph-guided fused lasso
(¢GFlasso): highly correlated genes tend to have similar influences the same
subsets of traits.
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Both problems are convez (no local minimum) and can be solved by state-of-
the-art optimization algorithms.

Visualization - GenAMap
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Figure: The structured (edges) of the traits (blue hexagons) and gene groups (circles) are
displayed with (b) and without (a) the association edges (red edges). SNPs are represented at
the bottom of GenAMap's genome browser.

Simulation Study

We simulated datasets with N = 250 individuals, P = 100 SNPs, J =
500 genes, and K = 20 traits at different noise levels. GFlasso-gGFlasso
outperformed three baseline methods in terms of TPR and FPR.

of =05=1/4 0 =05=1 0 = 4,05 =16

TPR  FPR TPR FPR TPR FPR
B, by GFLasso 0.9454 0.0060 0.8965 0.0057 0.7884 0.0092
B, by Lasso 0.9758 0.7632 0.9535 0.0763 0.9081 0.7528
B, by gGFLasso 1.0000 0.0000 0.9333 0.0016 0.7067 0.0205
B, by GFLasso 0.9800 0.0004 0.9233 0.0039 0.7000 0.0207
B; by GFlasso-gGFlasso 0.9200 0.0266 0.8600 0.0305 0.8400 0.2450
B; by GFlasso-GFlasso 0.9200 0.0266 0.8600 0.0615 0.8400 0.2500
B; by Lasso-Lasso 1.0000 0.8803 1.0000 0.9030 1.0000 0.8559
B; by PLINK 0.6300 0.0150 0.5357 0.0234 0.5000 0.0294

NIH Heterogeneous Stock Mice Data Analysis

943 SNPs were found to be associated with 746 genes, and 412 of these genes
were associated with 133 traits. We found that 604 SNP-trait associations
were also recovered by PLINK. This suggests that GFlasso-gGFlasso can help
to explain some of these signals, in addition to the newly discovered signals.
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Figure: An interesting association between Chr 17, H2 genes, and immunology traits.
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