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Chapter 1

Concentration Inequalities

1.1 Preliminaries: oP and OP notation

Definition 1 (oP ). Let {Xn} be a sequence of random variables, we say Xn = oP (1) if
Xn

p→ 0. That is, for every ε > 0,

lim
n

P(|Xn| > ε) = 0.

More generally, Xn = oP (Yn) means Xn/Yn = oP (1).

Definition 2 (OP ). Let {Xn} be a sequence of random variables, we say Xn = OP (1) if
for every ε > 0, there exists M(ε) > 0 such that

P(|Xn| > M(ε)) < ε, for all n.

Thus, there exists a compact set to which all Xn give probability “almost” one. {Xn} is
also called uniformly tight and bounded in probability. More generally, Xn = OP (Yn) means
Xn/Yn = OP (1).

Remark. Sometimes the above definition applies to only sufficiently large n. That is
for every ε > 0, there exists M(ε) and n0(ε) such that the above inequality holds for all
n > n0(ε).

Proposition 1.

(a) Xn = oP (1) implies Xn = OP (1). Every converging random sequence is bounded in
probability.

(b) (Prohorov) If Xn
d→ X for some X, then Xn = OP (1). Every weakly converging

random sequence is uniformly tight.
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Proof. (a) By definition, for every ε > 0, there exists an n0(ε) such that for all n ≥ n0(ε),

P(|Xn| > 1) < ε.

Next, we pick M0(ε) so that P(|Xi| > M0(ε)) < ε for i = 1, . . . , n0(ε) − 1. Thus, we
have for M(ε) = max{M0(ε), 1} that

P(|Xn| > M(ε)) < ε, for all n,

which proves Xn = OP (1).

(b) For every ε > 0, we pick M1(ε) to be the continuity point of distribution function of
X so that

P (|X| > M1(ε)) < ε/2.

By definition of weak convergence, P (|Xn| > M1(ε)) → P (|X| > M1(ε)) as n → ∞.
Thus there exists an n0(ε) such that for all n ≥ n0(ε),

P (|Xn| > M1(ε)) < P (|X| > M1(ε)) + ε/2 < ε.

Next, we pick M0(ε) so that P(|Xi| > M0(ε)) < ε for i = 1, . . . , n0(ε) − 1. Thus, for
M(ε) = max{M0(ε),M1(ε)}, we have

P(|Xn| > M(ε)) < ε, for all n,

which completes the proof that Xn = OP (1).

Remark. We may use part(b) to prove (a) directly: Xn = oP (1) implies Xn
d→ 0, which

immediately shows Xn = OP (1) by part (b). Nevertheless, the condition in part (b) is
not weaker than the one in part (a). Part (a) requires Xn to converge to a constant 0 in
probability whereas part (b) requires Xn to converge to a random variable X (not necessarily
0) in distribution.

Example 1.

(a) By weak law of large numbers, X̄n
p→ µ so that X̄n − µ = oP (1). Here, X̄n =∑n

i=1Xi/n is the sample mean of i.i.d. integrable random variables with expected
value E[X1] = µ.

(b) By central limit theorem,
√
n(X̄n−µ)

d→ N (0, σ2) so that X̄n−µ = OP

(
1√
n

)
. Here,

σ2 is the variance of i.i.d. random variables Xi.

Proposition 2.

(a) Xn = oP (an) and Yn = oP (bn), then XnYn = oP (anbn).
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(b) Xn = oP (an) and Yn = oP (bn), then Xn + Yn = oP (max{an, bn}).

(c) Xn = OP (an) and Yn = OP (bn), then XnYn = OP (anbn).

(d) Xn = OP (an) and Yn = OP (bn), then Xn + Yn = OP (max{an, bn}).

(e) Xn = oP (an) and Yn = OP (bn), then XnYn = oP (anbn).

(f) Xn = oP (an) and Yn = OP (bn), then Xn + Yn = OP (max{an, bn}).

Proof. TODO

Remark. In multiplication, oP always wins; while in addition, OP always wins.

TODO: Delta method, Slutsky, Continuous mapping theorem, Lehmann (2004, Theorem
2.3.4)

1.2 Motivation

Concentration inequalities are concerned bounding random fluctuations of functions of
many independent random variables. One key property of those inequalities is that the
random variables are only required to be independent, but not necessarily identically dis-
tributed. One general form is as follows:

P
(∣∣∣g(Z1, Z2, . . . , Zn)− E[g(Z1, Z2, . . . , Zn)]

∣∣∣ ≥ ε) ≤ δn,
where Z1, Z2, . . . , Zn are independent random variables and g : Zn → R is a real-valued
measurable function. We’d like to have δn → 0 as n → ∞. More generally, we may need
uniform bounds of the above form:

P

(
sup
g∈G

∣∣∣∣∣g(Z1, Z2, . . . , Zn)− E[g(Z1, Z2, . . . , Zn)]

∣∣∣∣∣ ≥ ε
)
≤ δn (1.1)

over a function class G.

Example 2. Consider the empirical risk minimization framework for binary classification
problems. Given a decision rule f : X → {0, 1}, the population risk is defined as

R(f) = P (Y 6= f(X)) ,

and the empirical risk on the training data Dn = {(Xi, Yi), i = 1 · · ·n} is

R̂n(f) =
1

n

n∑
n=1

I (Yi 6= f(Xi)) .



8 CHAPTER 1. CONCENTRATION INEQUALITIES

The optimal risk, called Bayes risk, and the optimal rule are, respectively,

R∗ = inf
f
R(f), and f∗ = argmin

f
R(f).

Given only finite number of training data Dn, it is natural to consider minimizing the
empirical risk over some class of functions F :

f̂n = argmin
f∈F

R̂n(f).

A fundamental question of interest is to know how close is R(f̂n) to R∗ = R(f∗). The
difference, called excess error, can be decomposed as:

R(f̂n)−R∗ =
(
R(f̂n)−R∗F

)︸ ︷︷ ︸
estimation error

+
(
R∗F −R∗

)︸ ︷︷ ︸
approximation error

,

where R∗F = inff∈F R(f), the best population risk that can be achieved over the class F .

The first term is a random quantity that reflects the error that we incur because f̂n (itself
is random) is found by minimizing the empirical risk R̂n based on n samples, instead of
having access to the population risk R. The second term is a deterministic quantity that
reflects how much we lose by restricting the search space over the class F .

Intuitively, as the sample size n grows, the estimation error should converge to zero (in
probability). We are interested in how rapidly it converges, i.e., how the rate depends on
the sample size n and the richness of the function class F . Notice that the estimation error
can be decomposed further as:

R(f̂n)−R∗F =
(
R(f̂n)− R̂n(f̂n)

)
+
(
R̂n(f̂n)−R∗F

)
.

The first term is the difference between empirical risk and population risk of f̂n, which is
trivially bounded by supf∈F |R̂n(f) − R(f)|. For the second term, we have the following
upper bound:

R̂n(f̂n)−R∗F = R̂n(f̂n)− inf
f∈F

R(f)

= sup
f∈F

(
R̂n(f̂n)−R(f)

)
≤ sup

f∈F

(
R̂n(f)−R(f)

)
≤ sup

f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣ ,
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where the first inequality follows from the definition of f̂n. Overall, the upper bound for
the estimation error is:

R(f̂n)−R∗F ≤ 2 sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣ .

For a fixed f ∈ F , P(|R̂n(f)−R(f)| ≥ ε)→ 0 by the weak law of large numbers. But we’d
like to have uniform convergence of the empirical risk R̂n(f) to the population risk R(f)
over a function class F , i.e., we are interested in bounding the probability

P

(
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣ ≥ ε) ,

and it is precisely of the form of uniform bound (1.1) with Zi = (Xi, Yi) and

g(Z1, Z2, . . . , Zn) =
1

n

n∑
i=1

I (Yi 6= f(Xi)) .

1.3 Elementary Tail Bounds

Theorem 3 (Markov). For nonnegative random variable X and ε > 0,

P(X ≥ ε) ≤ E[X]

ε
. (1.2)

Proof. For any nonnegative random variable X, we have inequality εI[X ≥ ε] ≤ X. Taking
the expectation on both sides and rearranging yields the Markov inequality.

Theorem 4 (Chebyshev). For a random variable X with mean µ and finite variance σ2,

P(|X − µ| ≥ ε) ≤ σ2

ε2
. (1.3)

Proof. By Markov inequality (1.2),

P(|X − µ| ≥ ε) = P(|X − µ|2 ≥ ε2) ≤ E[|X − µ|2]
ε2

=
σ2

ε2
.

Theorem 5 (Chebyshev-Cantelli). For a random variable X with mean µ and finite vari-
ance σ2, for any ε > 0,

P(X − µ ≥ ε) ≤ σ2

σ2 + ε2
, P(X − µ ≤ −ε) ≤ σ2

σ2 + ε2
.

It is essentially the one-sided version of Chebyshev’s tail bound (1.3).
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Proof. For any ε, we have

(ε− (X − µ)) I[X − µ < ε] ≥ ε− (X − µ).

Taking expectation on both sides yields E[(ε− (X − µ)) I[X − µ < ε]] ≥ ε. For ε > 0,
applying Cauchy-Schwarz inequality, we obtain

ε2 ≤ E[(ε− (X − µ)) I[X − µ < ε]]2

≤ E[(ε− (X − µ))2]P(X − µ < ε)

=
(
ε2 + σ2

)
P(X − µ < ε).

Rearranging the inequality, we have P(X − µ ≥ ε) ≤ σ2

σ2+ε2
. The other side of bound can

be obtained by applying the similar procedure to

(X − µ+ ε) I[X − µ > −ε] ≥ X − µ+ ε.

Example 3. Markov’s and Chebyshev’s inequality cannot be improved in general.

(a) For a given ε > 0, let P(X = 0) = 1− p and P(X = ε) = p for any p ∈ [0, 1]. Then

P(X ≥ ε) = p =
E[X]

ε
.

(b) For a given ε > 0, let P(X = 0) = 1 − p, P(X = ε) = p/2 and P(X = −ε) = p/2 for
some p ∈ [0, 1]. Then µ = E[X] = 0 and σ2 = var[X] = ε2p.

P(|X| ≥ ε) = p =
σ2

ε2
.

Theorem 6 (Chernoff). For any random variable X and any s > 0,

P(X ≥ ε) = inf
s>0

E[esX ]

esε
. (1.4)

Proof. As s > 0, we apply Markov inequality (1.2) to the non-negative variable esX ,

P(X ≥ ε) = P(esX ≥ esε) ≤ E[esX ]

esε
.

Since the above inequality holds for any s > 0, taking the infimum with respect to s yields
the desired inequality.
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Proposition 7. The best polynomial moment bound is always at least as tight as the
Chernoff bound. Suppose X ≥ 0 and its moment generating function (mgf) exists in a
neighbor of zero. For any ε > 0,

inf
k=0,1,2,...

E[Xk]

εk
≤ inf

s>0

E[esX ]

esε
. (1.5)

Proof. Let c = infk=0,1,2,...
E[Xk]
εk

. For any s > 0 where its moment generating function
exists, we have

E[esX ]

esε
=

1

esε

∞∑
j=0

sjE[Xj ]

j!

=
1

esε

∞∑
j=0

(sε)j

j!

E[Xj ]

εj

≥ c

esε

∞∑
j=0

(sε)j

j!

= c.

Taking the infimum over s > 0 yields the claim.

Remark. Though the best moment bound is shaper than the one obtained by the Chernoff
bound, the latter is more widely used and convenient in practice. The exponential form
in the mgf E[esX ] offers more advantages for dealing with sum of independent random
variables, as its mgf factorizes into the product of the mgfs of each individual random
variable. Accordingly, it is natural to study the behavior (such as its growth rate) of the
individual mgf.

1.4 Sub-Gaussian and Hoeffding Bounds

Definition 3 (Sub-Gaussian). A random variable X with mean µ = E[X] is sub-Gaussian
with parameter τ > 0 if for all s ∈ R,

E[exp(s(X − µ))] ≤ exp

{
τ2s2

2

}
. (1.6)

Remark. A random variable is sub-Gaussian if and only if its mgf is majorized by the mgf
of a Gaussian random variable (see Example 4), hence it is called “sub-Gaussian”.

Proposition 8. As the mgf exists over the whole line, X has finite moments of all orders:
E[|X|k] <∞ for any positive integer k. Moreover, E[(X − µ)2] ≤ τ2.
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Proof. As e|X| ≤ eX + e−X , E[e|X|] ≤ E[eX ] + E[e−X ] <∞. Therefore,

E[|X|k] ≤ k!E[e|X|] <∞.

By Taylor’s expansion,

E[exp(s(X − µ))] = 1 +
s2

2
E[(X − µ)2] + o(s2).

Comparing to

exp

{
τ2s2

2

}
= 1 +

s2

2
τ2 + o(s2),

and setting s→ 0, the inequality (1.6) implies that E[(X − µ)2] ≤ τ2.

Proposition 9. Any sub-Gaussian variable with parameter τ satisfies the following two-
sided exponential tail bound

P(|X − µ| ≥ ε) ≤ 2 exp

{
− ε2

2τ2

}
. (1.7)

Proof. We only prove one-sided bound as the other side is essentially the same. Applying
Chernoff bound (1.4) to the random variable X − µ, we obtain

P(X − µ ≥ ε) ≤ inf
s>0

E[exp(s(X − µ))]

exp(sε)
≤ inf

s>0
exp(τ2s2/2− sε) = exp

{
− ε2

2τ2

}
.

The last equality is achieved by setting s = ε/τ2 > 0.

Proposition 10. As we will show in Example 4 below, standard Gaussian variable is sub-
Gaussian, hence it satisfies the bound (1.7). This bound is sharp up to polynomial-factor
corrections, as shown below. Let Z ∼ N (0, 1), and φ(z) = 1√

2π
exp(−z2/2) be its density

function. For any z > 0,

1. (Mill’s inequality) (
z

1 + z2

)
φ(z) ≤ P(Z ≥ z) ≤ 1

z
φ(z). (1.8)

2. A variant of the above inequality is(
1

z
− 1

z3

)
φ(z) ≤ P(Z ≥ z) ≤

(
1

z
− 1

z3
+

3

z5

)
φ(z). (1.9)

Proof. See Appendix 1.6.1.
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Figure 1.1: A comparison of different upper bounds for P(|Z| ≥ z). Mill’s bound: the
upper bound in (1.8); Chernoff bound: the bound in (1.7); Markov bound: the bounds
in (1.5) for different k.

Remark. The lower bound in (1.8) is always tighter than the one in (1.9), whereas for large
enough z (z2 > 3), the upper bound in (1.9) is tighter than the one in (1.8). See Figure 1.1
for a comparison of different upper bounds for P(|Z| ≥ z). Note that Mill’s bound (1.8)
is tighter than other generic bounds as it is obtained from the specific form of Gaussian
density function (See Appendix 1.6.1).

Example 4. Classical examples of sub-Gaussian variables are Gaussian, Rademacher, and
bounded random variables.

1. (Gaussian) Let X ∼ N (µ, σ2), its mgf is

E[exp(sX)] = exp(µs+ σ2s2/2), ∀s ∈ R.

Hence (1.6) holds with equality and X is sub-Gaussian with parameter τ = σ.

2. (Rademacher) Let X is Rademacher with P(X = +1) = P(X = −1) = 1/2. Note
that E[Xk] = 0 for each odd k and E[Xk] = 1 for each even k. By Taylor expansion,

E[esX ] =
∞∑
k=0

skE[Xk]

k!
=
∞∑
k=0

s2k

(2k)!
≤
∞∑
k=0

s2k

2kk!
= es

2/2, (1.10)

where we apply the inequality 2kk! ≤ (2k)! in the last step. Hence X is sub-Gaussian
with parameter τ = 1.
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3. (Bounded) Let X be zero-mean (µ = 0), and supported on [a, b] almost surely. We
will use three different ways to show that X is sub-Gaussian, two of which implies
its parameter τ is at most b−a

2 .

(a) Denote the cumulant generating function of X as ψX(s) = logE[esX ]. It is easy
to verify that ψX(0) = 0 and ψ′X(0) = µ = 0, and

ψ′′X(s) =
E[X2esX ]

E[esX ]
−
(
E[XesX ]

E[esX ]

)2

.

Let Z be a random variable with distribution dPs(x) = esxdPX(x)∫
esxdPX(x)

, then the

above identity can be written as

ψ′′X(s) = E[Z2]− E[Z]2 = var(Z).

Because Ps (hence Z) is also concentrated on [a, b], its variance is bounded above
by:

ψ′′X(s) = var(Z) = var

(
Z − a+ b

2

)
≤ (b− a)2

4
,

where the last inequality follows from the fact that
∣∣Z − a+b

2

∣∣ ≤ b−a
2 .

Putting together, by Taylor’s expansion, for some ξ ∈ [0, s],

ψX(s) = ψX(0) + sψ′X(0) +
s2

2
ψ′′X(ξ) ≤ s2(b− a)2

8
,

which immediately implies that E[exp(sX)] ≤ exp
{
s2(b−a)2

8

}
.

(b) In part (a), we rely on the Taylor’s expansion of ψX(s) and then bound its second
derivative ψ′′X(s). Here, we first apply the convexity of exponential function to
obtain the upper bound of ψX(s). By identity

sx =
x− a
b− a

sb+
b− x
b− a

sa,

we have

esx ≤ x− a
b− a

esb +
b− x
b− a

esa, ∀x ∈ [a, b].

Taking expectation on both sides and exploiting E[X] = 0, we obtain

eψX(s) = E[esX ] ≤
(

1 +
a

b− a
− a

b− a
es(b−a)

)
esa.

Denote p = −a/(b− a), the above inequality can be written as

ψX(s) ≤ log(1− p+ pes(b−a))− ps(b− a).
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It remains to show g(s)
.
= log(1 − p + pes(b−a)) − ps(b − a) ≤ s2(b − a)2/8. By

straightforward calculation, g(0) = g′(0) = 0, and

g′′(s) = (b− a)2
(1− p)pes(b−a)

(1− p+ pes(b−a))2
≤ (b− a)2

4
.

The last inequality follows from the elementary inequality cd ≤ (c+d)2/4. Thus,
by Taylor’s expansion, for some ξ ∈ [0, s],

ψX(s) ≤ g(s) = g(0) + sg′(0) +
s2

2
g′′(ξ) ≤ s2(b− a)2

8
.

(c) We will apply a technique called symmetrization to show that X is sub-Gaussian
with parameter at most τ = b− a. First, we introduce an independent copy X ′

of X with EX′ [X ′] = 0. For any s ∈ R, we have

EX [esX ] = EX [es(X−EX′ [X
′])].

Since the function f(y)
.
= e−sy is convex, by Jensen’s inequality,

e−sEX′ [X
′] ≤ EX′ [e−sX

′
].

Combining the above two steps, we have

EX [esX ] ≤ EX,X′ [es(X−X
′)].

Next, we introduce an independent Rademacher random variable ε. As X −X ′
is symmetric about 0, the random variabes (X − X ′) and ε(X − X ′) have the
same distribution. Therefore,

EX [esX ] ≤ EX,X′ [es(X−X
′)] = EX,X′,ε[esε(X−X

′)].

Finally, we apply the Rademacher sub-Gaussian bound in (1.10), conditioning
on (X,X ′) to be fixed,

EX [esX ] ≤ EX,X′,ε[esε(X−X
′)] = EX,X′

[
Eε[esε(X−X

′)]
]
≤ EX,X′ [e

s2(X−X′)2
2 ].

Because both X and X ′ are supported on the inverval [a, b], (X−X ′)2 ≤ (b−a)2.
Putting everything together, we conclude

EX [esX ] ≤ e
s2(b−a)2

2 ,

which implies that X is sub-Gaussian with parameter at most τ = b− a.
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Theorem 11 (Equivalence of sub-Gaussian variables). For any zero-mean variable X, all
the following properties are equivalent characterizations of being sub-Gaussian:

(a) Moment generating function: there exists a τ > 0 such that for all s ∈ R,

E[exp(sX)] ≤ exp

{
τ2s2

2

}
.

(b) Majorized by a zero-mean Gaussian random variable: there exists a constant c ≥ 1
and a Gaussian variable Z ∼ N (0, σ2) such that for all z ≥ 0,

P(|X| ≥ z) ≤ cP(|Z| ≥ z).

(c) Moments: there exists a number θ ≥ 0 such that for k = 1, 2, . . .

E[X2k] ≤ (2k)!

2kk!
θ2k.

(d) Exponential moments: for all λ ∈ [0, 1),

E
[
exp

{
λX2

2τ2

}]
≤ 1√

1− λ
.

Proof. TODO

Proposition 12. Suppose X1 and X2 are zero-mean and sub-Gaussian with parameters
τ1 and τ2 respectively.

(a) If X1 and X2 are independent, X1 +X2 is sub-Gaussian with parameter
√
τ21 + τ22 .

(b) In general (without assuming independence), X1+X2 is sub-Gaussian with parameter
at most τ1 + τ2.

Proof. (a) By independence,

E[exp(s(X1 +X2))] = E[exp(sX1)]E[exp(sX2)] ≤ exp

{
(τ21 + τ22 )s2

2

}

(b) By Hölder inequality, for any p, q > 1 such that p−1 + q−1 = 1

E[exp(s(X1 +X2))] ≤ (E[exp(psX1)])
1/p (E[exp(qsX1)])

1/q

≤ exp

{
s2

2
(pτ21 + qτ22 )

}
.
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Choosing p = 1 + τ2/τ1 to minimize the bound on the right side, we obtain

E[exp(s(X1 +X2))] ≤ exp

{
s2

2
(τ1 + τ2)

2

}
,

which establishes the claim.

Remark. If we regard the parameter of a sub-Gaussian variable as its “norm”, then (b)
implies that it satisfies the desired triangle inequality. See Buldygin and Kozachenko (2000,
Theorem 1.2) for more details about the Banach structure of the space of sub-Gaussian
random variables.

Theorem 13 (Hoeffding). Suppose that Xi, i = 1, . . . , n are independent sub-Gaussian
variables with mean µi and parameter τi. Then for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
− nε2

2
n

∑n
i=1 τ

2
i

}
. (1.11)

Proof. By Proposition 12(a),
∑n

i=1(Xi − µi) is sub-Gaussian with parameter
√∑n

i=1 τ
2
i .

Then the theorem follows Proposition 9 directly.

Corollary 14. Let Xi, i = 1, . . . , n be independent variables with Xi ∈ [ai, bi] almost surely,
then for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
− 2nε2

1
n

∑n
i=1(bi − ai)2

}
.

Proof. Setting τi = bi−ai
2 in (1.11) yields the claim.

1.5 Sub-exponential

TODO: sub-exponential and Bernstein inequality; Chi-square bound, random projection
and Johnson-Lindenstrauss lemma

1.6 Appendix

1.6.1 Proof of Proposition 10

Proof. We will repeatedly apply an elementary identity φ′(z) + zφ(z) = 0. Hence φ′(z) =
−zφ(z) < 0 for all z > 0.
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1. For upper bound,

P(Z ≥ z) =

∫ ∞
z

φ(x) dx =

∫ ∞
z

xφ(x)
1

x
dx =

∫ ∞
z
−φ′(x)

1

x
dx

≤
∫ ∞
z
−φ′(x)

1

z
dx = −φ(x)|∞z

1

z
=

1

z
φ(z).

For lower bound,∫ ∞
z

φ(x) dx ≥
∫ ∞
z

φ(x)

(
x4 + 2x2 − 1

x4 + 2x2 + 1

)
dx =

−x
x2 + 1

φ(x)

∣∣∣∣∞
z

=

(
z

1 + z2

)
φ(z).

2. Following the proof of upper bound above,

P(Z ≥ z) =

∫ ∞
z
−φ′(x)

1

x
dx =

∫ ∞
z
−1

x
dφ(x) = −1

x
φ(x)

∣∣∣∣∞
z

−
∫ ∞
z

φ(x)
1

x2
dx

=
1

z
φ(z)−

∫ ∞
z

xφ(x)
1

x3
dx =

1

z
φ(z) +

∫ ∞
z

φ′(x)
1

x3
dx,

where we apply φ′(z) + zφ(z) = 0 twice.
For lower bound, as φ′(x) < 0 for x > 0,

P(Z ≥ z) ≥ 1

z
φ(z) +

∫ ∞
z

φ′(x)
1

z3
dx =

1

z
φ(z)− 1

z3
φ(z).

For upper bound, we apply the integration by part one more time,

P(Z ≥ z) =
1

z
φ(z) +

∫ ∞
z

1

x3
dφ(x) =

1

z
φ(z) +

1

x3
φ(x)

∣∣∣∣∞
z

+

∫ ∞
z

φ(x)
3

x4
dx

=
1

z
φ(z)− 1

z3
φ(z)−

∫ ∞
z

φ′(x)
3

x5
dx

≤ 1

z
φ(z)− 1

z3
φ(z)−

∫ ∞
z

φ′(x)
3

z5
dx

=
1

z
φ(z)− 1

z3
φ(z) +

3

z5
φ(z).
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